Name:	W UPES
Enrolment No:	UNIVERSITY OF TOMORROW

UPES

End Semester Examination, May 2025

Programme Name: B. Tech Chemical Engineering Semester: IV
Course Name: Chemical Reaction Engineering Time: 03 hrs.
Course Code: CHCE 2035 Max. Marks: 100

Nos. of page(s) : 2

Instructions: (a) Attempt all questions. (b) Assume the value of any missing data.

This is an open-book, open-notes, and open Laptop (without internet) examination. Students may use MS Excel to solve Questions 2 and 3

	T.	Excel to solve Questions	4 allu 3		1
S. No.				Marks	CO
	Hexamethyleneted reactor by adding L/min to an initia 4NH ₃ (B) + 6HCHC The reaction is i reaction mass is 2 and the initial con				
Q1	(a) Which is the ling complete conversion of it have on version of the conversion of	20 M	CO1		
	[Hint: Align your to				
Q 2	concentration has	ta represent the tracer experime been measured at the reactor outle metric flow at the outlet is 7.2 m³/l Concentration (mol/L-min) 0.0*C _{A0} 42.0*C _{A0} 84.9*C _{A0} 113*C _{A0} 141.5*C _{A0}	et. The reactor volume is	45 M	CO2,4
	15	141.5*C _{A0}			

	17.5			127*C	A0						
	20			113.3*0	ZA0						
	22.5			85*C _A	0						
	25			56.6*C	A0						
	27.5			42*C _A							
	30			28.3*C							
	32.5			9*C _{A0}							
	35			5*C _{A0}							
	37.5			3*C _{A0}							
	40			C_{A0}							
	(a) Use Excel to plot the Residence Time Distribution (RTD) function E(t), the cumulative distribution function F(t), and 1 – F(t) versus time and explain the significance of each of the curves. [10 M] [CO2] (b) Determine the fraction of material that spent between 5 and 25 minutes in the reactor. [5 M] [CO2] (c) Calculate the mean residence time of the CSTR and determine the fraction of material that spent less than the mean residence time in the reactor. [5 M] [CO2] (d) Compute the variance and skewness of the RTD. Based on your analysis, comment on any possible non-ideality in the reactor behaviour. [5 M] [CO2] (e) Assume a first-order, irreversible, isothermal, liquid-phase reaction occurring in a completely segregated flow system with a reaction rate constant of 0.05 min ⁻¹ . Calculate the mean conversion. [10 M] [CO3] (f) For the first-order reaction as in part (e), obtain the conversion in a single CSTR and also obtain the conversion using the Tanks-in-Series model. [10 M] [CO3]										
	An adiabatic, irreversible reaction A→B was carried out, and the following rate versus conversion data was recorded. The molar flow rate of A is 290 mol/min.							_			
	X _A	0	0.2	0.4	0.45	0.5	0.6	8.0	0.9		
	r.									25	604.3.4
Q 3	-r _A (mol/lit.min)	0	0.23	0.46	0.50	0.54	0.69	0.92	1.035	35	CO1,2,4
	(a) Construct a land a CSTR to a		-			_		olume o	f a PFR		

- (b) Based on the plot, identify the range of conversions over which the volumes of the PFR and CSTR are approximately equal (within a $\pm 10\%$ difference). [5 M] [CO2]
- (c) What conversion can be achieved if a CSTR with the volume from part (a) is followed by a PFR with the volume from part (a)? [10 M] [CO4]
- (d) What conversion can be achieved if a PFR with the volume from part (a) is followed by a CSTR with the volume from part (a)? [10 M] [CO4]
- (e) Which reactor sequencing (CSTR \rightarrow PFR or PFR \rightarrow CSTR) provides better conversion, and why? [5 M] [CO4]