Name:	W UPES
Enrolment No:	UNIVERSITY OF TOMORROW

UPES

End Semester Examination, May 2025

Programme Name: B.Tech Chemical Engineering
Course Name: Mass Transfer
Course Code: CHCE2034
Semester: IV
Time: 03 hrs
Max. Marks: 100

Nos. of page(s) : 02

Instructions: In case of data missing make necessary assumptions

S. No.	SECTION A (4*5 Marks=20 Marks) Answer all questions							
Q 1	1 Define mass average velocity and molar average velocity							
Q 2								
Q 3	Differentiate between azeotropic and extractive distillation.							
Q 4	List out the characteristics of the packing materials used for absorption.							
	SECTION B							
	(4*10 Marks=40 Marks) Answer all questions							
Q5	A gas mixture (N_2 =6%, H_2 =25%, NH_3 =66%, and Ar =3%) flows through a	10						
	pipe, 25.4 mm in diameter, at 4.05 bar total pressure. If the velocities of the	$\begin{array}{c c} 10 & \\ CO2 \end{array}$						
	respective components are 0.03 m/s, 0.035 m/s, 0.03 m/s, and 0.02 m/s.	M						
	Calculate the mass average and molar average velocities of the mixture.							
Q 6	Explain the step-by-step procedure for finding the number of stages for	10	~~^					
	steady-state cross-current contact.	M CO3						
Q 7	Describe the criteria for selecting a suitable solid-liquid extraction system	ystem 10						
	for industrial applications.							
Q 8	In a graph, draw the equilibrium and operating lines for counter-current	10						
1	stripping and absorption with the help of material balance expressions.	M	CO2					
SECTION C								
	(2*20 Marks=40 Marks) Attempt all questions							
Q 9	A mixture of benzene and toluene containing 35 mole% of benzene is to be							
	separated to give a product of 90 mole% benzene at the top, and the bottom	20						
	product with 5 mole% benzene. The feed enters the column at its boiling		CO3					
	point, and the vapor leaving the column is simply condensed and provides	M						
İ	product and reflux. It is proposed to operate the unit with a reflux ratio of							
ſ	3.0. Locate the feed plate and the number of plates. The vapor pressures of							

	pure benzene and toluene are 1460 and 584 mm Hg, respectively. Total							
	pressure is 75	_						
Q1								
0	is to be extracted two times with isopropyl ether (B) at 20 °C, using 50 kg of							
	solvent in each stage, determine the quantities and compositions of the							
	various streams.							
	Equilibrium Data:							
	Water layer (100 kg)			Isopropyl ether layer (100 kg)				
	Acetic	Water	Isopropyl	Acetic acid	Water	Isopropyl		
	acid		ether			ether		
	0.69	98.1	1.2	0.18	0.5	99.3	20	
	1.41	97.1	1.5	0.37	0.7	98.9	20 M	CO4
	2.89	95.5	1.6	0.79	0.8	98.4	141	
	6.42	91.7	1.9	1.93	1.0	97.1		
	13.30	84.4	2.3	4.82	1.9	93.3		
	25.50	71.1	3.4	11.40	3.9	84.7		
	36.70	58.9	4.4	21.60	6.9	71.5		
	44.30	45.1	10.6	31.10	10.8	58.1		
	46.40	37.1	16.5	36.20	15.1	48.7		
	13.30 25.50 36.70 44.30	84.4 71.1 58.9 45.1	2.3 3.4 4.4 10.6	4.82 11.40 21.60 31.10	1.9 3.9 6.9 10.8	93.3 84.7 71.5 58.1		- - -