Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Programme Name: B. Tech Chemical Engineering
Course Name: Numerical Methods in ChE
Course Code: CHCE2019

Semester: IV
Time: 03 hrs
Max. Marks: 100

Nos. of page(s) : 2

Instructions: (a) Attempt all questions.

(b) Assume the value of missing data, if any.

SECTION	N A
$(12 \times 5 = 6$	0 M)

S. No.		Marks	CO
Q 1	In the below system of linear equations assume any real value of a_{12} , a_{23} , a_{31} and b_2 so that the system has a unique solution and solve the equation by Gauss Gauss-Seidel method $\begin{bmatrix} a_{12} & 2 & 1 \\ 1 & 3 & a_{23} \\ a_{31} & 2 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ b_2 \\ 3 \end{bmatrix}$	12 M	CO1
Q 2	The Ergun equation is used to describe the flow of fluid through a packed bed. ΔP is the pressure drop, ρ is the density of the fluid , G_o is the mass velocity, D_p is the diameter of the particles within the bed, μ is the fluid viscosity, L is the length of the bed and ε is the void fraction of the bed. $\frac{\Delta P \rho D_p}{G_o^2 L} \frac{\varepsilon^3}{1-\varepsilon} - 150 \frac{1-\varepsilon}{\left(D_p G_o/\mu\right)} - 1.75 = 0$ Experiments are carried out on a packed bed to estimate the void fraction of the bed, ε . The best fit values of the dimensionless parameters of the bed are reported as, $\frac{D_p G_o}{\mu} = 1000$ and $\frac{\Delta P \rho D_p}{G_o^2 L} = 10$. Use an open iterative scheme of your choice to estimate the value of ε using an initial guess of 0.25. Do <i>Three</i> iterations.	12 M	CO2
Q 3	Heat transfer in a straight fin of uniform cross section is given as, $\frac{d^2\theta}{dx^2} - m^2\theta = 0$ $x=0, \theta=1$	12 M	CO3

	$x=1, \qquad \frac{d\theta}{dx} = -(Bi)\theta$ Where θ is the dimensionless temperature at any position in the fin, x is the dimensionless location, Bi is the dimensionless Biot number, and m^2 is the product of Bi and a dimensionless group involving the fin dimensions. Obtain the algebraic equations to be solved using the finite difference technique with step size 0.25. [You don't need to solve the problem]												
Q 4	Fit a second-order polynomial using the least square method to the following data												
	x 0		1		2	3		4	5	5		CO2	
	у	2.1		7.7		13.6	27.	2	40.9	61.1			
Q5	The river is 80 meters wide. The following table gives the depth D in meters at a distance x meters from one bank. Calculate the cross-section area of the river using (a) Simpson's 1/3 rule (b) Simpson's 3/8 rule. x in meter 0 10 20 30 40 50 60 70 80								OSS-	12 M	CO3		
	D in m		0	4	7	9	12	15	14	8	3		
Q 6	fraction that is within 10^{-4} of $\sqrt{10}$. (b) Discuss the conditions for the rate of convergence of the Newton-										20 M	CO2	
Q 7	Raphson algorithm using the fixed-point iteration method. Consider a series reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ carried out in a batch												
	reactor. The differential equation for component A is, $\frac{dC_A}{dt} = -k_1 C_A$									20 M	CO4		
	for com	for component B is,											

$$\frac{dC_B}{dt} = k_1 C_A - k_2 C_B$$

and for component C,

$$\frac{dC_c}{dt} = k_2 C_B$$

The initial condition is: at t =0, $C_A=1, C_B=0$, and $C_C=0.5$. The rate constants are $k_1=k_2=1\,\mathrm{sec^{-1}}$. Use the fourth-order Runge-Kutta method to determine the concentration of A, B and C up to 6 sec, using a step size of 2 sec.