3 1	•
	ame:
Τ.4	ame.

Enrolment No:

UPES

End Semester Examination, May, 2025

Course: Aerodynamics – I Program: B.Tech ASE Course Code: ASEG 2020 Semester: IV Time 03 hrs. Max. Marks: 100

SECTION A

S. No.		Marks	CO
Q1.	Define streamlines, pathlines, and streaklines. 4		CO1
Q2.	Provide a reasoned explanation for the generation of form drag on an aircraft	4	CO2
Q3.	Explain the role of conformal transformation in the aerodynamic analysis of airfoils.	4	CO3
Q4.	Discuss the aerodynamic advantages provided by multi-element airfoils.	4	CO4
Q5.	Interpret the influence of Aspect Ratio of wing on its aerodynamic efficiency.	4	CO5
	SECTION B		
Q6.	Derive the momentum equation in its integral conservative form.		
	OR Discuss in detail the differences between the Eulerian and Lagrangian approaches for describing fluid motion. Illustrate your explanation with a suitable example.	10	CO2
	describing fraid motion. Indicate your explanation with a surface example.		
Q7	Define a source flow and derive the expression for its stream function and velocity potential function.	10	CO3
Q7 Q8	<u>-</u>	10	CO3

	SECTION-C		
Q 10	Superimpose uniform flow with a vortex sheet placed along the camber line of an airfoil. Derive an expression to estimate the circulation of the vortex sheet. Apply this expression to a symmetric airfoil to obtain: i. Lift coefficient as a function of angle of attack ii. Location of the aerodynamic center OR The NACA 4412 airfoil has a mean camber line given by $\frac{z}{c} = 0.25 \left[0.8 \left(\frac{x}{c} \right) - \left(\frac{x}{c} \right)^2 \right] \qquad \text{for } 0 \le \frac{x}{c} \le 0.4$ $\frac{z}{c} = 0.111 \left[0.2 + 0.8 \left(\frac{x}{c} \right) - \left(\frac{x}{c} \right)^2 \right] \qquad \text{for } 0.4 \le \frac{x}{c} \le 1$ Using thin airfoil theory calculate: i. Zero lift angle of attack ii. C_L when angle of attack is 3^0 iii. C_m at quarter chord when angle of attack is 3^0 iii. C_m at quarter chord when angle of attack is 3^0 iv. $ "x_{cp}/c "$ when angle of attack is 3^0	20	CO4
Q 11	An aircraft has a wing area of 15.8 m ² and a wingspan of 9.75 m. Its maximum gross weight is 10898 N. The wing uses an NACA 65-415 airfoil, which has a lift slope of 0.1033 /degree and zero lift angle of attack of -3°. Assume $\tau = 0.12$. If the airplane is cruising at 53.64 m/s at standard sea level condition at its maximum gross weight and is in straight flight at constant altitude. Calculate the geometric angle of attack of the wing.		CO5