Name: **Enrolment No:** ## **End Semester Examination, May 2025** Course: Geophysics Semester: IV Program: B.Tech APE Time: 03 hrs. Course Code: PEGS2055 Max. Marks: 100 **Instructions:** - I. Write correct unit in numerical after calculation. - II. Draw neat diagram with proper labeling to explain the answer ## SECTION A (5Qx4M=20Marks) | S. No. | | | | |---------|---|--------|-----| | S. INO. | | Marks | CO | | Q1 | Mark true or false i. Electromagnetic methods use electrodes to inject current into the ground ii. Direct waves travel faster than refracted waves. iii. Drift correction is applied in seismic reflection data. iv.In layered media, the velocity of seismic waves typically decreases with depth. | 1*4=4 | CO1 | | Q 2 | i. Explain magnetic susceptibility with examples. ii. Compare the travel speed of seismic waves through dense and less dense rocks with examples. | 2*2=4 | CO2 | | Q 3 | i. Apply your understanding of wave propagation to explain the speed difference between P-waves and S-waves earths interior. | 4 | CO3 | | Q 4 | Evaluate the specific challenges posed by urban environments on seismic surveys and discuss potential strategies to mitigate these challenges. | 4 | CO4 | | Q 5 | Differentiate regional and residual anomalies in geophysical survey. OR Differentiate Seismic Reflection and Refraction Survey | 1*4=4 | CO4 | | | SECTION B | | | | 0.6 | (4Qx10M= 40 Marks) | | | | Q.6 | i. Discuss how geophysical methods are integrated with geological models.ii. Differentiate between static correction and weathering correction. | 5*2=10 | CO1 | | Q.7 | i. List and explain three types of anomalies in gravity or magnetic surveys.ii. Define porosity. Explain influence of porosity in hydrocarbon migration and accumulation. | 5*2=10 | CO2 | | Q.8 | i. Explain the diurnal correction in magnetic surveys?ii. Explain different corrections applied and its significance in seismic survey | 5*2=10 | CO3 | | Q.9 | Answer any two of the following | | | | | |------|--|---------|-----|--|--| | | i. Draw and define typical seismic refraction profile showing different types of waves. | | | | | | | ii. Define porosity and explain its significance in reservoir characterization. List the typical porosity ranges for the following reservoir rocks: Sandstone , Limestone , Carbonates , Shale . | 5*2=10 | CO4 | | | | | iii. A petroleum reservoir has the following characteristics: Area (A) = 150 acres; Net pay thickness (h) = 20 feet; Porosity (ϕ) = 0.25; Water saturation (Sw) = 0.30. Calculate the volume of hydrocarbons in place (HCIIP). | | | | | | | SECTION-C | | | | | | | (2Qx20M=40 Marks) | | | | | | Q.10 | Answer any Two i. Discuss static, elevation, and NMO corrections in seismic surveys. | | | | | | | ii. In a refraction survey, the travel time at 1500 m offset is 1.2 s. If the first layer velocity is 600 m/s and the second layer velocity is 1800 m/s, estimate the depth to the refractor. | | | | | | | iii. (a) Explain the importance of weathering correction in land-based seismic reflection surveys. | 10*2=20 | CO3 | | | | | (b) A receiver shows an extra delay of 0.04 seconds due to a weathering layer with a seismic velocity of 600 m/s. Calculate the thickness of the weathered layer responsible for this delay. | | | | | | Q.11 | i. Explain the principle and application of time-lapse (4D) seismic in enhanced oil recovery. | | | | | | | ii. A geophone is placed 20 m above the reference datum and a shot point is 10 m below the same datum. If the average velocity of the top layer is 1800 m/s, compute the elevation correction for the geophone and shot point. | 10*2=20 | CO4 | | |