N	ame:	

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Solid State Physics
Program: B.Sc. (H) Physics
Course Code: PHYS 3057
Semester: IV
Time: 03 hrs.
Max. Marks: 100

Instructions: 1) Mention your Roll No. at the top of the question paper.

2) Attempt all the parts of a question at one place only.

3) Use of non-programmable scientific calculator is allowed.

SECTION A

(All questions are compulsory)

		(All questions are compulsory)		
S. No.			Marks	CO
Q 1	(i)	Piezoelectricity is a result of:		
		a. Asymmetry in the crystal structure		
		b. Ferromagnetic alignment		
		c. Ionic conduction		
		d. Thermal expansion		
	(ii)	Pyroelectric materials are most sensitive to:		
		a. Electric fields		
		b. Sound waves		
		c. Changes in temperature		
		d. Mechanical vibrations		
	(iii)	What is a necessary condition for a material to exhibit pyroelectricity?	4	CO2
		a. It must be an insulator		
		b. It must be a metal		
		c. It must have a permanent electric dipole		
		d. It must be heated above its melting point		
	(iv)	Which of the following statements about ferroelectric domains is		
		correct?		
		a. Domain walls are highly conductive		
		b. Domains are separated by grain boundaries		
		c. Domain orientation can be changed by applying an external electric field		

	d. Domains are permanent and unchangeable		
0.2			
Q 2	Why do crystalline materials have sharp melting points?	4	CO2
Q 3	Draw the fermi-energy diagram for intrinsic and extrinsic semiconductors.	4	CO3
Q 4	In terms of magnetic susceptibility, how do paramagnetic materials compare to ferromagnetic materials?		
Q 5	What are quasi-particles? Give some examples.	4	CO1
	SECTION B		
	(All questions are compulsory)		
Q 6	Show that the interplanar spacing for orthorhombic crystals is given by		
	$d_{hkl} = \frac{1}{\sqrt{\left(\frac{h}{a}\right)^2 + \left(\frac{k}{b}\right)^2 + \left(\frac{l}{c}\right)^2}}$ where the symbols have their usual meanings.	10	CO1
Q 7	Derive Curie-Weiss law for ferroelectric materials.	10	CO1
Q 8	Derive the expression for magnetic susceptibility of a diamagnetic material and show that all electrons contribute towards diamagnetism.		CO3
Q 9			CO4
	SECTION-C		
	(Q10 is compulsory while Q 11 has internal choice)		
Q 10	(a) Show that the Langevin-Debye equation in dielectrics is		
	$\mathbf{P} = NE \left\{ 4\pi \varepsilon_o R^3 + \frac{e^2}{\omega_o^2} \left(\frac{1}{m} + \frac{1}{M} \right) + \frac{\mu^2}{3kT} \right\}$	10	
	where, the symbols have their usual meanings. (b) A paramagnetic material has a BCC structure with a unit cell edge of 2.8 Å. If the saturation value of the magnetization is 1.5 x 10 ⁶ A/m, calculate the average magnetization contribution per atom in Bohr magnetron.	10	СОЗ

Q 11	solids, and how can o	amptions of Einstein's theory of specific heat for one derive the temperature-dependent expression	10	
	for specific heat based			
	transitions into the su	r effect, and how does it occur when a material perconducting state?	10	
		OR		
	isotope typically lead	g an element in a superconductor with its heavier s to a lower critical temperature. What does this chanism of superconductivity?	10	CO2
	by	D lattice vibrations the angular frequency is given $\omega = \sqrt{\frac{4\beta}{m}} \left \sin \frac{ka}{2} \right $	10	
	where the symbols have	e their usual meanings		

Values of some physical constants:

Planck's constant, $h = 6.6 \times 10^{-34} \text{ J.s}$

Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J/K}$

Mass of electron, $m_e = 9.1 \times 10^{-31} \text{ Kg}$

Mass of proton, $m_p = 1.67 \times 10^{-27} \text{ Kg}$

Velocity of light, $c = 3 \times 10^8 \text{ m/s}$

Rydberg Constant, $R = 1.097 \times 10^7 \text{ m}^{-1}$

Avogadro's number = 6.023×10^{23} Permittivity of free space, $\epsilon_o = 8.85 \times 10^{-12}$ F/m Permeability of free space, $\mu_o = 4\pi \times 10^{-7}$ H/m