Name:

Enrolment No:

CO

CO4

CO₂

10

10

UPES End Semester Examination, May 2025

Course: Mathematical Physics III

Program: B.Sc. (Hons.) Physics

Course Code: PHYS 3056

Semester: IV

Time: 03 hrs.

Max. Marks: 100

Instructions:

Q8

1. All questions are compulsory (Q. No. 9 and Q. No. 11 have internal choices).

 $[-\pi, \pi]$ expand it into an appropriate Fourier series.

Remembering f(x) and $g(\alpha)$ to be a pair of Fourier transforms,

derive that $\frac{df}{dx}$ and $i\alpha g(\alpha)$ are a pair of Fourier transforms as well.

2. Use of scientific calculators is not allowed during the test.

SECTION A (5Qx4M=20Marks) S. No. Q 1 State Cauchy's residue theorem. 4

Q 1	State Cauchy's residue theorem.	4	CO1
Q 2	Define three dimensional Fourier transform along with the inverse formula for the same.	4	CO2
Q 3	Find the Laplace transform of $f(t) = e^{t^2}$.	4	CO2
Q 4	Let $z = a + ib$, with a and b real. Find the real part of $\cos(a + ib)$.	4	CO1
Q 5	State the Dirichlet conditions for the convergence of a Fourier series.	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Define $f(z) = e^z$. Let a be a positive real number, and let C be the rectangle with vertices 0 , a , $a + 2\pi i$, $2\pi i$.		
	Explicitly evaluate the integral $\oint f(z)dz$ over C without using Cauchy's theorem and illustrate that the theorem applies in this case.	10	СОЗ
Q 7	Understanding the function $f(x) = \cosh x$ defined over the period		

Q 9	Find the Laplace transform of Delta function $\delta(t-t_0)$, use it to solve	3+7 = 10	CO3	
	$y'' + \omega^2 y = \delta(t - t_0)$ with the boundary conditions $y_0 = y_0' = 0$.			
	OR			
	Use Laplace transform to solve:			
	$y'' + 9y = \cos 2t$ with the boundary conditions $y(0) = 1, y\left(\frac{\pi}{2}\right) = -1$.	10	CO3	
SECTION-C (2Qx20M=40 Marks)				
Q 10	Solve the equation $(e^{-at}, t > 0)$			
	$y''(t) + 8y'(t) + 7y(t) = f(t) = \begin{cases} e^{-at}; & t > 0 \\ 0; & t < 0 \end{cases}$	20	CO4	
Q 11	Define $f(z) = \frac{ze^{iz}}{(z^2+a^2)(z^2+b^2)}$.			
	Find all the singularities of the function in the region $Im z \ge 0$ and compute their residues. Hence show that	10+10		
	$\int_{-\infty}^{+\infty} \frac{x \sin x}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{(b^2 - a^2)} (e^{-a} - e^{-b}) \text{ for } 0 < a < b.$		CO3	
	OR	20		
	Evaluate $\frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} \frac{e^{zt}}{\sqrt{z+1}} dz$ where a and t are any positive constants.			