Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Introduction to MATLAB Programming

Program: B.Sc. Physics by Research

Course Code: CSEG 2054K

Semester : IV

Time : 03 hrs.

Max. Marks: 100

Instructions: Read the questions clearly and provide needed details only.

All questions are mandatory in Section A.

Internal choices are given in questions 6 and 11 of Sections B and C respectively.

SECTION A (5Qx4M=20Marks)

	(* ************************************		
S. No.		Marks	CO
Q 1	Explain what MATLAB is and how MATLAB is different from other computational software such as MATHEMATICA and MAPLE?	4	CO1
Q 2	Using MATLAB, compute the radius of a circle having unit area.	4	CO1
Q3	Compute the following using MATLAB: $e^{3}, \ln(e^{3}), \log_{10}(10^{5})$	4	CO2
Q 4	$e^{3}, \ln(e^{3}), \log_{10}(10^{5})$ Using MATLAB programming, compute the following trigonometric functions: $\sin^{2}\frac{\pi}{6} + \cos^{2}\frac{\pi}{6} \text{ and } y = \cosh^{2}x - \sinh^{2}x, \text{ with } x = 32\pi$	4	CO2
Q5	Using for loop statement in MATLAB write the code to compute the factorial of a given number.	4	CO3
	SECTION B		1
	(4Qx10M=40 Marks)		
Q6	Using the curve fitting methods in MATLAB computer programming, fit the data generated from the $y = A \sin (B x + C)$, where A, B, C are constants. OR		
	Using the curve fitting methods in MATLAB computer programming fit the data generated from the	10	CO3
	y = AExp(B.x), and $y = Alog(x) + B$, where A, B are constant.		
Q7	Given the electric field of a point charge in free space:	10	CO4

	$\vec{E} = \frac{q}{4\pi\varepsilon_0}\frac{\vec{r}}{r^3}$ Using MATLAB programming, examine the divergence of the given electric filed and verify Gauss's law in differential form.			
Q8	 (a) Explain the quiver function. (b) Create a 2D meshgrid for x, y ∈ [-5,5]. (c) Calculate the gradient of the function: f(x, y) = x² + y². (d) Plot the gradient vectors using the quiver function in MATLAB programming. 	10 (3+2+3+2)	CO4	
Q9	A hot object cools down to an ambient temperature at a rate proportional to the temperature difference. If the ambient temperature is 20°C and the initial object temperature is 80°C with a cooling constant of 0.07. Using MATLAB computer programming, find the temperature after 30 minutes.	10	CO2	
SECTION-C (2Qx20M=40 Marks)				
Q10	The three-dimensional vector field is given by:			
	 F = 2x²yî + y²zĵ + z²xk Using MATLAB programming compute: (a) The divergence of the vector field at (-2, 3, 4). (b) Visualize the vector field using quiver function. (c) Plot the diverging filed using isosurface function. 	20 (10+5+5)	CO4	
Q11	The velocity of a free vortex is: $V = \left(\frac{-ky}{x^2 + y^2}, \frac{-kx}{x^2 + y^2}, 0\right)$ where k is a constant. Using MATLAB compute: (a) The curl of the given vector field. (b) Plot the given vector field. (c) Visualize the vorticity distribution. OR	20 (10+5+5)	CO4	

A fluid is rotating like a rigid body with velocity:

$$V = (-\omega y, \omega x, 0)$$

where $\boldsymbol{\omega}$ is a constant angular velocity.

- (a) Find the curl $\nabla \times V$. What does this represent physically? (b) Plot the vector function.
- (c) Plot the curl of the vector function.