Name:

Enrolment No:

Semester: II

UPES

End Semester Examination, May 2025

Course: Linear Algebra-II

Program: B.Sc. (Hons.) Mathematics by Research Time : 03 hrs.

Course Code: MATH 1063 Max. Marks: 100

Instructions: All questions are compulsory. Use of calculator is not allowed.

SECTION A (5Qx4M=20Marks)S. No. Marks \mathbf{CO} Let V be a vector space of dimension 7 over \mathbb{R} and let $T: V \to V$ be a Q 1 linear operator with minimal polynomial $m(t) = (t^2 + 1)(t + 2)^3$. Find 4 **CO1** all the possible rational canonical forms for T. Prove that all the eigenvalues of a nilpotent linear transformation are Q 2 4 CO₁ zero. Let $T: \mathbb{C}^3 \to \mathbb{C}^3$ be defined by O 3 T(x, y, z) = (ix + (2 + 3i)y, 3x + (3 - i)z, (2 - 5i)y + iz)4 CO₂ Find the adjoint of T, *i.e.*, $T^*(x, y, z)$. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by Q4 T(x, y) = (3x + 3y, x + 5y).Find the characteristics polynomial and all eigenvalues of T. Is T CO₃ 4 diagonalizable? Define normal operators. State Spectral theorem for a finite dimensional Q 5 inner product space V. 4 CO₄ **SECTION B** (4Qx10M = 40 Marks)Find the basis $\{\phi_1, \phi_2, \phi_3\}$ that is dual to the following basis of \mathbb{R}^3 : Q6 $\{v_1 = (1, -2, 3), v_2 = (1, -1, 1), v_3 = (2, -4, 7)\}.$ 10 CO₃ Q 7 a) Prove that the eigenvalues of a self-adjoint linear operator are all b) Show that eigenvectors corresponding to the distinct eigenvalues of a CO₂ 5+5 self-adjoint linear operator are orthogonal to each other.

Q 8	Let T_1 and T_2 be two linear operators on an inner product space V and let $k \in F$ be a scalar. Then, prove the following: a) $(T_1 + T_2)^* = T_1^* + T_2^*$ b) $(kT)^* = \bar{k}T^*$	5+5	CO2
Q 9	State and prove Bessel's inequality for an inner product space $(V(F), <, >)$.		
	Find the Fourier coefficient and the projection of $v = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ along $w = \begin{pmatrix} 1 & 1 \\ 5 & 5 \end{pmatrix}$ in a vector space $V = M(2, \mathbb{R})$ with the inner product defined by $\langle A, B \rangle = trace(B^T A)$ where B^T is the transpose of matrix B .	10	CO4
SECTION-C (2Qx20M=40 Marks)			
Q 10	 a) Let <i>U</i> and <i>W</i> be subspaces of a vector space <i>V</i> of finite dimension. Prove that (U+W)⁰ = U⁰ ∩ W⁰ where X⁰ denotes the annihilator of a set X. b) Find a basis of the annihilator W⁰ of the subspace W of ℝ⁴ spanned by v₁ = (1,2,-3,4) and v₂ = (0,1,4,-1). 	10+10	СО3
Q 11	Suppose $v=(1,3,5,7)$. Find $w\in W$ that minimizes $ v-w $, where W is the subspace of \mathbb{R}^4 spanned by $v_1=(1,1,1,1)$ and $v_2=(1,2,3,2)$. OR a) Let S be a subset of a vector space V . Show that orthogonal complement of $S, i.e., S^\perp$ is a subspace of V . b) Obtain an orthonormal basis from the standard basis of $P_2(\mathbb{R})$, the space of all real polynomials of degree ≤ 2 , the inner product being defined by $\langle f(t), g(t) \rangle = \int_{-1}^1 f(t)g(t)dt$	20	CO4