Name:

Enrolment No:

Semester: II

Time: 03 hrs.

Max. Marks: 100

UPES

End Semester Examination, May 2025

Course: Robot Motion Planning and Navigation

Program: M.Tech Robotics Engineering

Course Code: ECEG7040

Instructions: Read all questions carefully. State your assumptions

SECTION A (5Qx4M=20Marks)

	(* & =====)		
S. No.		Marks	CO
Q 1	Enumerate the advantages of the Grassfire algorithm in determining the path from source to destination.	4	CO1
Q 2	Explain the role of a robust path in path planning and its importance in ensuring reliable navigation.	4	CO2
Q 3	Describe the role of path planning algorithms in the autonomous navigation of a robot.	4	CO1
Q 4	Identify common scenarios where directed and undirected weighted graphs are applied in path planning.	4	CO2
Q 5	Illustrate the advantages of linear quadratic regulator in trajectory tracking by an autonomous robot.	4	CO1

SECTION B (4Qx10M= 40 Marks)

Q 6	Illustrate how the Dijkstra algorithm can be used to obtain the shortest distance path for the given graph network. 2 B 3 C 2 F	10	CO2
Q 7	Discuss the drawbacks of using PID control for trajectory tracking in robotics. Additionally, highlight situations where PID controllers remain commonly used and perform effectively.	10	CO3
Q 8	Explain feedback control design based on a robot's kinematic model, with a suitable example.	10	CO3
Q 9	Describe the role of user comfort as an objective in path planning. Explain why comfort is important and how it can be incorporated into the cost function of planning algorithms.	10	CO4

			Or					
	Explain the signific	ance of cons	idering					
	autonomous robots in they can be incorporate				hey ma	tter and how		
	1 2		SECTI	ON-C	1	-		
Q 10	In the given arena, bla		Qx20M=4			ls denote		
Q 10	free space, (S) marks (a) Select a suitable ro (b) Briefly explain the (c) Compute the path	the Start, and (bust path plants algorithm profrom start to g	(D) the Doning algorocedure.	estinatio prithm v	on: with ass		4+4+8+4	
	(d) llustrate the resulti	ng path and ju	stify its r	obustne	ess.	_		
		D						
		+ +						
		$\overline{}$		<u> </u>				
		1 1	S	†				GO.4
	<u> </u>		CO4					
	Obtain the minimum algorithm for the give costs between node paspeed of 2 units/sec of).	n graph networ	rk. The gr nomous sy	aph rep ystem n	oresents noves a	distances as at an average		
	3	B 7	5	D	···、2		20	
	A) 4	2 j 5	··-·(¹ / _E		F 3		
			7					
Q 11	Evaluate the shortest by-step process of pat path evaluation. The	h planning an	d specify	any ass	sumptio	ons made for	12+4+4	CO3

ells as f ell.	ree spac	ce, with	(S) deno	oting the	start cel	l and (D) the des	stination	
ļ									
ļ						D			
ļ									
ŀ		S							