Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Industrial and Service Robots Semester: II

Program: M. Tech (Robotics) Time: 03 hrs

Course Code: ECEG7030 Max. Marks: 100

Instructions: 1. Carefully read all the questions before attempting.

- 2. Assume any missing data and clearly state your assumptions.
- 3. Provide detailed explanations and show all necessary calculations.
- 4. Use appropriate units and notation where required.
- 5. Diagrams and sketches should be neat and labelled properly.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO	
Q 1	Define the term "odometry".	4	CO1	
Q 2	Describe how differential drive kinematics affect robot movement.	4	CO1	
Q 3	Name three sources of uncertainty in localisation.	4	CO2	
Q 4	Name a few domestic robots that are used for cleaning and housekeeping purposes.	4 CO2		
Q 5	Define exteroceptive and proprioceptive sensors with examples.	4	CO1	
	SECTION B		-	
	(4Qx10M=40 Marks)			
Q 6	A differential drive robot has two wheels spaced 0.5 meters apart. Calculate the robot's linear and angular velocity if the left wheel rotates at a velocity of 1.0 m/s and the right wheel rotates at 0.5 m/s. Hint: Think about how the difference in wheel speeds and the distance	10	CO3	
	between the wheels influence the robot's turning rate.			
Q 7	Compare the rolling and sliding constraints of a steered standard wheel and a castor wheel. Discuss the advantages and disadvantages of each wheel type in terms of maneuverability and control.			
	OR	10	CO2	
	A mobile robot uses sensor and motion data for localization in a structured indoor environment. Apply your understanding of Kalman and Extended Kalman Filters to explain how each filter would process			

	uncertain motion and noisy sensor measurements. Provide a scenario or example to support your explanation.		
Q 8	A robot is using a range sensor to determine its position in a known environment. The robot has two possible locations: H_1 (near a wall) and H_2 (away from a wall). The range sensor provides a reading E indicating a short distance to an obstacle. Given: • Prior probabilities: $P(H_1) = 0.6$, $P(H_2) = 0.4$. • Sensor model: $P(E H_1) = 0.9$, $P(E H_2) = 0.2$. Compute the probability that the robot is near the wall given the sensor reading.	10	CO3
Q 9	Consider the bicycle robot shown in the figure below. This robot has two standard wheels arranged so that positive wheel rotation makes the bicycle drive forward, along with the robot's x-direction.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q 10	A robot is placed in a 3×3 grid world, where each cell is labelled by coordinates (x, y), with x and y ranging from 0 to 2. Some cells contain landmarks (L), while others do not (NL = No Landmark). The robot does not know its starting position. It uses sensor readings and movement to estimate where it is, updating its belief using Bayesian methods.	20	CO4

		(0,2): L	(1,2): NL	(2,2): NL			
		(0,1): NL	(1,1): L	(2,1): NL			
		(0,0): NL	(1,0): NL	(2,0): L			
	Sensor Mo						
	• P(s • P(s						
	,						
	Motion Model:80% chance the robot moves correctly as per command						
	• 10%						
		ere is a 10% cha ward direction.	nce it overshoots	and moves two c	cells in the		
		move took it o					
	'I	obability =0). his, predict the r					
				oward (increasing			
Q 11	A robot is moving along a one-dimensional path (1D) and is using a Kalman filter to estimate its position. The only state variable is the robot's position x . At time step $t = 0$: One Initial estimated position: $\hat{x}_0 = 2$ Onitial uncertainty (variance): $P_0 = 1.5$ At each time step, the robot: One Moves forward by 2 meter, with process noise variance $Q = 0.3$ One Receives a noisy measurement of its position with measurement noise variance $R = 0.4$ At time step $t = 1$, the robot receives a sensor measurement: $z_1 = 4.1$ Using the Kalman filter, perform the following steps: 1. Predict the robot's position after the move. 2. Update the estimate using the sensor measurement.				20	CO4	
	set to 6 rad after 3 seco 0.8 meters, point of the	A/sec and 10 rad/ onds. The distan , and each whee e robot coordina	sec, respectively. ce between the two has a radius of 0 te system is locat	ht wheel angular Calculate the role wo wheels (track who). 3 meters. The rested at the midpoint eels with the group of the control of the con	oot's pose width) is ference at of the		