Name:

Roll No:

Semester: II

Time: 03 hrs

UPES

End Sem Examination, May-2025

Programme Name: M. Tech Petroleum Engineering Course Name: Enhanced Oil Recovery Techniques

Course Code: PEAU 7009 Max. Marks: 100

Instructions:

> All questions are compulsory.

> All the abbreviations used in the paper have their usual meanings.

➤ However, internal choice has been provided. You have to attempt only one of the alternatives in all such questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q1	Define CMC and surface-active agents	04	CO1
Q2	Define Residual resistance factor and permeability reduction factor.	04	CO1
Q3	Explain MMP, MMC and CMC	04	CO2
Q4	Why is steam preferred over hot water? Justify.	04	CO2
Q5	Discuss Mobility ratio in details along with the favorable and unfavorable conditions.	04	CO2

SECTION B (4Qx10M=40 Marks)

Q6	Explain in detail about SAGD EOR process with neat sketch and reservoir specifications.	10	CO2
Q7	Explain in detail about <i>insitu</i> combustion method with neat sketch and reservoir specifications.		
	OR	10	CO3
	Explain in detail about Huff and Puff method with neat sketch with reservoir specifications		

Q8	Discuss Micellar flooding process and effects of brine salinity concentration on Micellar flooding process.		10	CO3
Q9	Q9 Calculate the oil recovery for the following data: a) when displacement efficiency is applied to only to the unburnt zone I and no oil is produced from the zone outside of the area swept by the combustion b) when displacement efficiency is applied to both zones I and II			
	Oil saturation at the start of the project	0.70		
	Effective rock porosity	0.32	10	CO5
	Pattern sweep efficiency	0.55		
	Vertical sweep efficiency	0.35		
	Displacement efficiency in zone I	0.43		
	Oil consumed	0.065		
	SECTION-C (2Qx20M=40 Marks)	,		
Q10	Discuss the Drive indexes for the material balance equations. Assuming hyperbolic decline, predict the amount of oil produced for five years for the following data:			
	well's production rate at time 0, STB/day	100 BOPD		
	initial nominal exponential decline rate (t = 0), 1/day	0.5/year		
	hyperbolic exponent	0.9		
	OR		20	CO3 +
	Explain exponential decline curve method and calculate the data based on given well data:			CO4
	A well with an exponential decline of 1.5% per month currently produces at 300 STB/day.			
	a) Production rate be in 2 yearsb) Cumulative production be in those 2 years			

Q11	reservoir pressurization. Althowas above the MMP of 2114 ppressure to 1143 psia. The deoriginal pressure before the state	vailable rate of 12580 bbl/day (2000 m³/day) for ugh the original reservoir pressure of 2143 psia sia, primary depletion had reduced the reservoir ecision was made to return the reservoir to its rt of CO ₂ injection. Calculate the total amount of me necessary for reservoir pressurization with	5+15	CO3 + CO5
	·			
	Oil production rate (actual)	$q_o = 1352 \text{ STB/day } (215 \text{ m}^3/\text{day})$		
	Gas Oil ratio	GOR (average) = 200 STB/bbl		
	water production rate (actual)	$Q_w=126 \text{ bbl/day } (20 \text{ m}^3/\text{day})$		
		$B_0 = 1.43$		
	Average formation volume factor	$B_{g} = 0.011$		
	Average solution ratio	$R_s = 650 \text{ scf/bbl } (114 \text{ m}^3/\text{m}^3)$		
	Original oil in place	16.773 * 10 ¹⁶ bbl		