Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Programme Name: M. Tech (Chemical)

Course Name : Multiphase Flow

Course Code : CHPD7026P

Semester : II

Time : 03 hrs

Max. Marks : 100

Nos. of page(s): 1

Instructions: The question paper consists of three sections. Answer all the questions.

Note: Assume suitable data wherever necessary

Section – A (Answer all questions)

S. No.		Marks	CO
1.	Describe the various types of multiphase flows typically found in engineering applications and explain the key differences between multiphase and single-phase flow.	5	CO2
2.	List out different models to analyze the two-phase flow.	5	CO1
3.	Briefly describe the major steps involved in a CFD simulation process	5	CO1
4.	Explain volume of fluid model.	5	CO2
	Section – B (Answer all questions)		
5.	Explain hybrid differencing scheme.	10	CO2
6.	Discuss in detail the various flow patterns encountered in a gas-liquid two phase flow through horizontal and vertical pipelines.	10	CO1
7.	Explain the physical significance of the drift flux model in two-phase flow and how does it differ from the homogeneous flow model. Derive equations for the model.	10	CO4
8.	Derive the first order accurate forward difference, backward finite difference and second order central difference approximation for the second derivative with respect 'X' using Taylor's series expansion.	10	CO3
	Section – C (Answer all questions)		
9.	Consider the problem of source-free heat conduction in an insulated rod whose ends are maintained at constant temperatures of 100 °C and 500 °C. Calculate the steady state temperature distribution in the rod with $k=1000$ W/mK, Cross-sectional area = 10×10^{-3} m ² and length = 0.5m.	20	CO3
10.	Analyze Eulerian – Eulerian model and Eulerian – Lagrangian model for multiphase flow.	20	CO5