Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Program Name : M Tech Chemical Engineering Semester : II **Course Name** : Advanced Process Control : 3 hours Time **Course Code** : CHPD 7013 Max. Marks: 100

Nos. of page(s) : 02

SECTION A

	SECTION A (5QX4M=20 marks)		
S. No.		Marks	CO
1	<i>Outline</i> in detail LVDT with a neat diagram. State various applications of LVDT in the industry.	4	CO1
2	Recall about the inherent characteristics of control valves	4	CO1
3	Describe bode stability criteria and crossover frequency	4	CO2
4	Explain what is root locus	4	CO2
5	<i>Interpret</i> the substitution rule.	4	CO3
	SECTION B		
	(4QX4M=40 marks)		<u> </u>
6	A thermometer having first-order dynamics with a time constant of 1 min is placed in a temperature bath at 100° F. After the thermometer reaches steady state, it is suddenly placed in a bath at 110° F at $t = 0$ and left there for 1 min, after which it is immediately returned to the bath at 100° F. <i>Identify</i> the thermometer reading at $t = 0.5$ min and at $t = 2.0$ min.	10	CO2
7	Demonstrate a formula for finding the time constant of the liquid-level system shown below, when the average operating level is h,. The resistance R is linear. The tank has three vertical walls and one which slopes at an angle α from the vertical as shown in figure. The distance separating the parallel walls is 1.	10	CO3
8	In the control system shown above, <i>calculate</i> the value of Kc for which the system is on the verge of the instability. The controller is replaced by a PD controller, for which	10	CO4

	the transfer function is $Kc(1+\tau_D s)$. if $Kc=10$, determine the range of τ_D for which the system is stable.		
9	Using Ziegler-Nichols rules, <i>design</i> proportional gain, derivative and integral time for the system shown below. (Do not plot the bode diagram and use Bode stability criterion) $R \longrightarrow PID \ controller \longrightarrow (s+1)(10s+1)$ OR With a neat diagram explain the distillation column control system by explaining the types of controllers that could be used.	10	CO5
	SECTION C		
	(2Q X 20M=40 marks)		
10	The two tank heating process shown in figure below consist of two identical , well stirred tanks in series. At steady state $Ta = Tb = 60^{\circ}F$. At $t = 0$, temp of each stream changes according to a step function $Ta'(t) = 10$ u(t) $Tb'(t) = 20$ u(t) (a) Choose a block diagram that relates $T2'$, the deviation in the temp of tank2, to Ta' and Tb' . (b) Illustrate an expression for $T2'(s)$ and $T2'(t)$ W1 = W2 = 250 lb/min V1 = V2 = 10 ft3 $\rho_1 = \rho_2 = 50$ lb/ft3 C = 1 Btu/lb (°F) OR Plot the root locus diagram for the open loop transfer function $K(s+6)$ $S(s+2)(s+4)(s+9)$	20	CO3
11	With neat diagrams and appropriate process and block diagrams <i>appraise</i> any two of the following 1. Smith Predictor 2. Ratio controller 3. Cascade controller	20	CO5