Name:	
Enrolment No:	UPES UNIVERSITY OF TOMORROW

UPES

End Semester Examination, May 2025

Programme Name: MSc Physics

Course Name: Atomic, Molecular and Laser Physics

Time: 3 hrs

Course Code: PHYS7034 Max. Marks: 100

No. of pages: 2

Instructions: As instructed in each section. Symbols have their usual meanings.

SECTION A

(Answer all the questions: $5 \text{ Qs} \times 4 \text{ M} = 20 \text{ Marks}$)

S. No.		Marks	CO
Q 1	Outline the characteristics of He-Ne laser.	4	CO1
Q 2	Identify the molecules (HBr, N ₂ , C ₆ H ₆ , HF, CO, CCl ₄ , HCl, O ₂) which are rotational active and which are not in a tabular form.	4	CO1
Q 3	Estimate Lande 'g' factor for the state, $2^2P_{3/2}$.	4	CO2
Q 4	First rotation Raman line is observed at 200 cm ⁻¹ . Calculate moment of inertia of diatomic molecule.	4	CO3
Q 5	A vibrational level transition is observed at 3350 cm ⁻¹ for HF molecule. Calculate the force constant k. Atomic weight of 'F' is 18.998 a.m.u.	4	CO4

SECTION B

(Answer all the questions: $4 \text{ Qs} \times 10 \text{ M} = 40 \text{ Marks}$)

Q 6	Elaborate with diagram, how rigid rotator energy level is different from non-rigid rotator.	10	CO1
Q 7	Show that for a rotating diatomic molecule equilibrium bond length can be expressed as, $r=\sqrt{\frac{hJ(J+1)}{8\pi^2c\bar{\nu}\mu}} \text{ where, symbols have their usual meanings.}$	10	CO2
Q 8	Calculate spectral purity of a 5500 Å laser with coherence time of 1 ns. [1 ns = 10^{-9} sec].	10	CO3

Q 9	Analyse with example				
	(a) jj coupling. OR	10	CO4		
	OK .				
	(b) Anomalous Zeeman effect.				
SECTION C (Answer all the questions: $2 \text{ Qs} \times 20 \text{ M} = 40 \text{ Marks}$)					
Q 10	(a) Describe Paschen-Back effect.				
	(b) Compute the relation between the Einstein co-efficients A and B in the form,	10	CO2		
		10	CO2		
	$A_{21} = \frac{8\pi h v^3}{c^3} B_{21}$				
Q 11	(a) Sketch construction of diode laser and illustrate its working.	10	CO3		
	(b) Outline N.M.R. Atoms (¹ H) are subjected to 100 MHz frequency for nuclear magnetic resonance to occur. What magnetic field is required for operation?	10	CO4		
	OR				
	(a) Calculate magnetic field required to observe Zeeman spectral shift (Δν) of 14 GHz.	10	СОЗ		
	(b) Analyse, P, R and Q branches of vibrational-rotational spectra of diatomic molecule.	10	CO4		