Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: ADVANCED QUANTUM MECHANICS Semester: II

Program: M.Sc. Physics Time : 03 hrs.
Course Code: PHYS7032 Max. Marks: 100

Instructions:

- Attempt all questions in Section A, Section B and Section C.
- Support your answers with appropriate equations, diagrams, and derivations wherever necessary.
- Use standard scientific notation and units.

SECTION A (50x4M=20Marks)

S. No.	(SQATIVI—ZUIVIAI KS)	Marks	СО
		Marks	CO
Q 1	State and explain the first-order correction to energy in non-degenerate time-independent perturbation theory.	4	1
Q 2	Write the basic principle of the variation method and explain its significance in quantum mechanics.	4	2
Q 3	Write the Dirac equation in covariant form and explain the physical significance of Dirac matrices.	4	2
Q 4	A beam of particles is scattered from a spherical potential well. Calculate the total scattering cross-section using the partial wave approximation.	4	3
Q 5	Calculate the total energy of a particle with the rest mass $m = 0.511$ MeV/c2 and momentum $p = 1$ MeV/c.	4	3
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Derive the expression for the first-order correction to the wave function in non-degenerate perturbation theory.	10	1
Q 7	Consider two non-interacting identical particles in a one-dimensional infinite potential well of width L. If both are in the lowest two energy levels, write down the total wavefunctions for: a. Bosons b. Fermions	10	2
Q 8	Apply the variation method to estimate the ground state energy of the helium atom.	10	3
Q 9	Explain the symmetric and antisymmetric wavefunction and drive the Slater Determinant for N-particle system. Show that two fermions cannot occupy the same quantum state using the antisymmetric wavefunction.	10	3
	OR		

	Using the Dirac matrices, show how the Dirac equation reduces to the				
	Pauli equation in the non-relativistic limit.				
SECTION-C					
(2Qx20M=40 Marks)					
Q 10	a. Apply the concept of partial wave analysis in scattering theory.b. Derive an expression for the scattering amplitude and discuss its application to low energy scattering.	10+10	3		
Q 11	Starting from the Klein-Gordon equation, derive its solution for a free particle and discuss the difficulties in physical interpretation. Compare it with the Dirac equation. OR Derive the semi-classical expression for the transition rate of emission or absorption of radiation by an atom interacting with an electromagnetic field.	20	3		