N	ล	n	n	e	•

Enrolment No:

UPES

End Semester Examination, June 2025

Course: Introduction to Computational Physics

Program: M. Sc. Physics

Course Code: PHYS7031

Semester : II

Time : 03 hrs.

Max. Marks: 100

Instructions:

1. All questions are compulsory.

2. Question 7 in section B has an internal choice.

3. Question 10 in section C has an internal choice.

4. Use of scientific calculators is allowed.

5. Number of Pages: 3.

SECTION A (5 Q x 4 Marks = 20 Marks)

S. No.		Marks	CO
1	Define truncation and round-off errors. Give one numerical example of each.	4	CO1
2	Create a flowchart for calculating the sum of the digits of a given integer.	4	CO1
3	Develop a Gnuplot script to plot a histogram of a dataset stored in a text file.	4	CO3
4	Write a C++/FORTRAN code snippet to swap two numbers using a function/subroutine.	4	CO2
5	Compose a LaTeX code snippet to display the following expression in display mode: $V(r) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{q_i}{\sqrt{(x-x_i)^2}}$ Format the equation using appropriate LaTeX syntax for summation, fractions, and square roots. Clearly define each symbol.	4	CO3

	SECTION B (4 Q x 10 Marks = 40 Marks)		
6	Develop a LaTeX document (preamble + body) for a lab report that includes a title, a table, and an equation section.	10	CO3
7	Describe how curve fitting is done using Gnuplot. Use the following data to fit a quadratic model: $x: 1, 2, 3, 4, 5;$ $y: 2.1, 4.2, 7.8, 13.5, 21.2.$ Write the Gnuplot script to fit the function of form $y = ax^2 + bx + c$. Include the fit process, parameter values, residual analysis, and a plot overlaying the data and fitted curve. What is the goodness of fit? OR Write Gnuplot commands to Generate a contour plot and 3D surface of (x^2, y^2)	10	CO3
8	$z=e^{-(x^2+y^2)}$ using Gnuplot. Explain each line of the script. Applying the Trapezoidal Rule, evaluate the integral $\int_1^3 ln(x) \ dx$ using 4 subintervals. Show all steps.	10	CO4
9	Compute the derivative of $f(x) = \sin(x)$ at $x = \frac{\pi}{4}$ using the forward difference method with step size $h = 0.01$. Display the result and compare it with the analytical derivative $f'(x) = \cos(x)$.	10	CO4
	SECTION-C (2 Q x 20 Marks = 40 Marks)		
10	Evaluate the following initial value problem using the 4th Order Runge-Kutta Method:	20	CO4

	$\frac{dy}{dx} = y - x^2 + 1,$		
	with $y(0) = 0.5$, find $y(0.2)$ using step size $h = 0.1$.		
	OR		
	Use Lagrange Interpolation to find $f(2.5)$ from the following data:		
	x: 1, 2, 3		
	f(x): 1, 4, 9		
11	Explain the Newton-Raphson Method and compare it with the Secant Method.	20	CO4
	Use the Newton-Raphson method to find the root of $f(x) = x^3 - 2x - 5$ with initial guess $x_0 = 2$, up to 3 decimal places.	20	CO4