Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Digital Electronics Semester: II

Program: MSc Physics Time : 03 hrs.
Course Code: ECEG7137 Max. Marks: 100

Instructions: Use of scientific calculator is allowed.

	SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО			
Q 1	Convert the following hexadecimal numbers into decimal and, then, into binary; (i) (A3B) ₁₆ , (ii) (2F3) ₁₆	4	CO2			
Q2	Multiply the following binary numbers; (i) (1011) and (1101), (ii) (1.01) and (10.1).	4	CO3			
Q3	Subtract (1010) ₂ from (1111) ₂ using; (i) direct method, (ii) 1's complementary method and (iii) 2's complementary method.	1's 4				
Q4	With the aid of a suitable truth table, draw the timing diagram of RS latch.	4	CO3			
Q5	Determine the number of bits required to represent in floating point notation the exponent for decimal numbers in the range of $10^{\pm 86}$.	4	CO1			
	SECTION B					
	(4Qx10M=40 Marks)					
Q6	Obtain (a) minimal sum of product and (b) minimal product of sum expressions for the function given below; $F(A,B,C,D) = \Sigma m (0,1,2,5,8,9,10)$	10	CO2			
Q7	Apply the Resistors, capacitors, and transistors to prepare; (a) Resistor-transistor Logic circuit (b) Resistor-Capacitor-Transistor logic circuits. Also, write the working of such devices with different combinations of inputs.	10	CO3			
Q8	Write the principle and operation of Full adder. Also, provide block diagram, circuit diagram and truth table for its operation.	10	CO4			
Q9	Apply more than one Full adders to add multibits and, thus, systematically add $A + B$. $A = (0101)_2$, $B = (1010)_2$ OR Using the half subtractors, construct a block diagram, circuit diagram, truth table, and Boolean equation for full subtractor.	10	CO1			
	SECTION-C		•			
	(2Qx20M=40 Marks)					

Q10	a) Draw an edge triggered J-K Flip- Flop system. Explain the various operation stages. (10) b) Explain the working of a D- flip flop with suitable example. (10)							CO2
Q11	a) What are circuit of one expression for	e-to-Four or final ou	de-multij tput function	plexer. Al	so prepare trut	ates to prepare a th table and give (10) table for 8-to-1 (10)	20	CO1
	OR With the aid of a vibrators, derive the principle, construction and working of a Multivibrator. Take any example and find the truth table and circuit diagram for the same. (20)							