Name:

Enrolment No:

Semester: II

Time: 03 hrs.

Max. Marks: 100

UPES

End Semester Examination, May 2025

Course: Computational Mathematics
Program: M.Sc. Mathematics

Course Code: MATH 7046

No. of Pages: 03

Instructions: Answer all the questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Using Modified Euler's method, obtain a solution of the equation $\frac{dy}{dx} = x + \sqrt{y} $ with initial condition $y(0) = 1$ for the range $0 \le x \le 0.4$ in steps of 0.2.	4	CO1
Q 2	(a) Determine whether the following equation is elliptic or hyperbolic. $ (x+1)u_{xx} - 2(x+2)u_{xy} + (x+3)u_{yy} = 0. $ (b) In which parts of the (x,y) plane is the following equation elliptic? $ \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} + (x^2 + 4y^2) \frac{\partial^2 u}{\partial y^2} = 2\sin(xy). $	4	CO2
Q 3	Define critical point and discuss the nature of the critical point of the following linear autonomous system: $\frac{dx}{dt} = -5x + y; \frac{dy}{dt} = x - 5y.$	4	CO3
Q 4	Discuss the classification of Mathematical Models based on their nature. Also classify the following models: (i) $x(t+1) = ax(t) - bx(t)y(t)$ $y(t+1) = -py(t) + qx(t)y(t)$ where $x(t)$ and $y(t)$ represent the populations of prey and predator species respectively. (ii) $\frac{dP_n}{dt} = \alpha P_{n-1}(t) - \beta P_{n+1}(t) - (\alpha + \beta) P_n(t)$; $n = 1,2,3$ and $P_n(t)$ is the probability of n persons at time t .	4	CO4
Q 5	Discuss the Linear Congruential method (LCM) for random number generation and using LCM, generate a sequence of 5 random numbers with $x_0 = 27$, $a = 17$, $b = 43$ and $m = 100$.	4	CO5

	SECTION B (4Qx10M= 40 Marks)		
			1
Q 6	Solve the equation $y'' - x^2y' - 2xy = 1$, $y(0) = 1$, $y'(0) = 0$ to obtain $y'(0.1)$ using Runge-Kutta method of order 4.	10	CO1
Q 7	Define Lyapunov's function and discuss Lyapunov's first method. Using the Lyapunov's first method, investigate the stability of the following system of equations: $\dot{x_1} = -3x_1 + x_2 \\ \dot{x_2} = -x_1 - x_2 - x_2^3.$	10	CO3
Q 8	Discuss population growth and decay models. A colony of bacteria grows according to the law of uninhibited growth $P(t) = 100 e^{0.045t}$ where P is measured in grams and t in days. Determine (a) The initial number of bacteria. (b) The growth rate of the bacteria. (c) The population after 5 days. (d) The time taken for the population to reach 140 grams. (e) The doubling time for the population.	10	CO4
Q 9	Solve $\nabla^2 u = 0$ under the conditions $u(0,y) = 0$, $u(4,y) = 12 + y$, for $0 \le y \le 4$; $u(x,0) = 3x$, $u(x,4) = x^2$ for $0 \le x \le 4$ by taking $h = k = 1$. Perform one iteration of Liebmann's method by obtaining initial approximations using standard (or diagonal) five-point formulae. OR Solve $u_{xx} - 16u_t = 0$ under the given conditions $u(x,0) = 0$, $u(0,t) = 0$ and $u(1,t) = 200t$. Using Crank-Nicholson technique, compute u for one time step with $h = 0.25$.	10	CO2
	SECTION-C		•
Q 10	(2Qx20M=40 Marks) Discuss sign definiteness of scalar functions, matrices, and quadratic forms.		
	Using Lyapunov's direct method, discuss the stability of the system $\dot{x} = Ax$, where $A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$. Also find the corresponding Lyapunov function.	20	СОЗ
Q 11	Discuss the Monte Carlo Simulation Technique and write the Monte Carlo algorithm to find the area enclosed by the curve $y = f(x)$ satisfying $0 \le f(x) \le M$ over the closed interval $a \le x \le b$ where M is a constant that bounds the function.	20	CO5
	A tourist car operator finds that during the past few months, the car's use has varied so much that the cost of maintaining the car varied considerably.		

During the past 200 days, the demand for the car fluctuated as shown in the following table:

Trips per week	Frequency
0	16
1	24
2	30
3	60
4	40
5	30

Simulate the demand for a 10-week period by making use of the random numbers 82, 96, 18, 96, 20, 84, 56, 11, 52 and 03. Also, find the Average demand per week.