Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Number Theory
Program: M.Sc. Mathematics
Course Code: MATH7026P
Semester: II
Time: 03 hrs.
Max. Marks: 100

Instructions: Answer the following questions as per the instructions.

SECTION A $(5Q \times 4M = 20Marks)$				
S. No.		Marks	СО	
Q 1	Evaluate $\left(\frac{-219}{383}\right)$, $\left(\frac{a}{p}\right)$ represents the Legendre symbol.	4	CO3	
Q 2	Let r be the remainder when 1059, 1417, 2312 are divided by $d>1$, then find $d-r$.	4	CO1	
Q 3	Justify the following statement. In Pell's equation $x^2 - dy^2 = 1$, d is taken to be square-free.	4	CO4	
Q 4	Find the multiplicative inverse of 29 under (mod 48).	4	CO2	
Q 5	Illustrate the fact that the Diophantine equation $x^n + y^n = z^n$ has the trivial integral solution, provided $xyz = 0$ and $n \ge 3$.	4	CO4	
	SECTION B (4Q x 10M = 40 Marks)			
Q 6	Prove that if p is a prime number and $(a,p) = 1$, then the congruences $x^n \equiv a \pmod{p}$ has $(n,p-1)$ solutions or no solutions according as $a^{(p-1)}/(n,p-1) \equiv 1 \pmod{p}$ or not.	10	CO2	
Q 7	Suppose p is an odd prime and integer a be such that $(a, p) = 1$. Consider set $S = \left\{a, 2a, 3a,, \frac{p-1}{2}a\right\}$ having subset $A = \left\{b \in S: b \pmod{p} > \left\lfloor \frac{p}{2} \right\rfloor\right\}$ such that $ A = n$, then show that $\left(\frac{a}{p}\right) = (-1)^n$.	10	CO3	
Q 8	Find the general formula for the <i>nth</i> Triangular and Pentagonal number.	10	CO4	

Q 9	Prove that, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$, for any odd prime p . Hence find $\left(\frac{5}{11}\right)$.			
	OR			
	Let m, n be odd integers, then prove that $\left(\frac{n}{m}\right) = (-1)^{\frac{n-1}{2} \cdot \frac{m-1}{2}} \left(\frac{m}{n}\right)$. Hence	10	CO3	
	evaluate $\left(\frac{3}{11}\right)$.			
SECTION-C (2Q x 20M = 40 Marks)				
Q 10	Find all possible solutions of the congruence $x^2 \equiv 79 \pmod{91}$.	20	CO3	
Q 11	Let (x, y, z) be a Pythagorean triplet. Then show that			
	(a) x and y are of different integral structures, provided z is odd.			
	(b) For any odd x , there exist $a, b \in \mathbb{N}$ with $a > b$, $(a, b) = 1$ and			
	$a \not\equiv b \pmod{2}$ satisfying $x = a^2 - b^2$, $y = 2ab$, $z = a^2 + b^2$.			
	OR	10 + 10	CO4	
	(a) Prove that (x, y) is a solution to the Pell's equation $x^2 - 2y^2 = 1$ if			
	and only if $x + y\sqrt{2} = (3 + 2\sqrt{2})^n$ for some $n \in \mathbb{N}$.			
	(b) Prove that Triangular – Square equation $T_m = S_n$ is shifted to x^2 –			
	$2y^2 = 1$ under the transformation $x = 2m + 1$, $y = 2n$ and reversely.			