Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Theory of Partial Differential Equations Semester: II
Program: M. Sc. Mathematics Time: 03 hrs.
Course Code: MATH7024 Max. Marks: 100

Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 10 marks) and attempt all questions from Section C (each carrying 20 marks). Question 6 and 11 have internal choice.

SECTION A (5Qx4M=20Marks)

	(0 411111 201111111)		
S. No.		Marks	CO
Q 1	Form a partial differential equation by eliminating the arbitrary constants a and b from the following relation $z(x,y) = axe^y + \frac{1}{2}a^2e^{2y} + b.$	4	CO1
Q 2	Find the general solution of Lagrange's equation $p-q=\log_e(x+y), \text{ (where }p\equiv\frac{\partial z}{\partial x}\text{ and }q\equiv\frac{\partial z}{\partial y}\text{)}.$	4	CO1
Q 3	Discuss Reducible and irreducible linear partial differential equations with constant coefficients by suitable examples.	4	CO2
Q 4	Show that $u(x,t) = \sin(\pi x)e^{-4t\pi^2}$, is a solution of the one-dimensional heat equation given by $\frac{\partial u}{\partial t} = 4\frac{\partial^2 u}{\partial x^2}.$	4	CO3
Q 5	Write a short note on the formulation of the one-dimensional wave equation.	4	CO4
	SECTION B		1
	(4Qx10M= 40 Marks)		
Q 6	Determine the region in the xy -plane where the following equation: $(1+x)u_{xx} + 2xyu_{xy} - y^2u_{yy} = 0,$ is elliptic, hyperbolic or parabolic.		
	OR	10	CO1
	Solve the partial differential equation		
	$(D^2 - DD')z = \cos 2y(\sin x + \cos x)$		
	where $D \equiv \frac{\partial}{\partial x}$ and $D' \equiv \frac{\partial}{\partial y}$.		

Q 7	Transform the two-dimensional Laplace equation			
	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$	10	CO2	
	in polar coordinates.			
Q 8	Reduce the partial differential equation			
	$\frac{\partial^2 z}{\partial x^2} - (1+y)^2 \frac{\partial^2 z}{\partial y^2} = 0. (y \neq -1)$	10	CO3	
	to canonical form.			
Q 9	Derive D'Alembert's solution to the one-dimensional wave equation.	10	CO4	
SECTION-C (2Qx20M=40 Marks)				
Q 10	A laterally insulated bar of length l has its ends A and B maintained at $0^{0}C$ and $100^{0}C$ respectively, until steady-state conditions prevail. If the temperature at B is suddenly reduced to $0^{0}C$ and kept so while that of A is maintained at $0^{0}C$, find the temperature at a distance x from A at any time t .	20	CO3	
Q 11	The vibration of an elastic string is governed by the partial differential equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}.$ The length of the string is π and the ends are fixed. The initial velocity is zero and the initial deflection is $u(x,0) = 2(\sin x + \sin 3x)$. Find the deflection $u(x,t)$ of the vibrating string at any time t .			
	OR	20	CO4	
	A tightly stretched string with fixed endpoints $x = 0$ and $x = \pi$ is initially at rest in its equilibrium position. If it is set vibrating by giving to each of its points an initial velocity given as			
	$\left(\frac{\partial y}{\partial t}\right)_{t=0} = 0.03\sin x - 0.04\sin 3x,$			
	then find the displacement $y(x, t)$ at any point of the string at any time t .			