Name:

Enrolment No:

UPES

END Semester Examination, May 2025

Programme Name: M.Sc. (Mathematics)

Course Name: Topology

Course Code: MATH7023

Semester: II

Time: 03 hrs

Max. Marks: 100

Nos. of page(s): 02

Instructions: All questions are compulsory. There is an internal choice in Q9 and Q11.

SECTION A (4 Marks * 5 = 20 Marks) Answer all questions

S. No.		Marks	CO
Q 1	What is a complete metric space? Identify whether indiscrete metric space is complete or not?	4	CO1
Q 2	Let (X,T) be a topological space with respect to the discrete topology, where $X = \{1,2,3\}$. Find the derived set of $A = \{1,2\}$, where $A \subseteq X$.	4	CO2
Q 3	Which of the spaces given below are connected? (i) $X = \{a, b, c\}; T = \{\Phi, \{a\}, \{b\}, \{a, b\}, X\}$ (ii) $X = \{a, b, c\}; T = \{\Phi, \{a\}, \{b, c\}, X\}$	4	CO3
Q 4	Prove that every T_2 -space is a T_1 -space.	4	CO4
Q 5	List all the topologies for $X = \{a, b, c, d\}$ which consists of exactly five members.	4	CO2

SECTION B $(10 \ Marks * 4 = 40 \ Marks)$ Answer all questions. There is an internal choice in Q9.

Q 6	Define T_0 , T_1 , T_2 , regular and normal spaces with supportive examples. Also give an example which is T_1 space but not T_2 .	10	CO4
Q 7	Show that a finite topological space is T_1 -space iff it is discrete.	10	CO3
Q8	Prove that (l_1, d) is a metric space. Where l_1 has its usual meaning.	10	CO1

Q 9	Show that every limit point of a set is always an adherent point but converse may not be true. OR				
	Let $X = N$, here N denotes set of natural numbers and let T be the family consisting of Φ , X and all subsets of the form $G_{n=}\{n, n+1, n+2, \dots\}$. (i) Show that T is a topology on X . (ii) What is derived set of $\{1\}$?	10	CO2		
SECTION C (20 Marks * 2 = 40 Marks) Answer all questions. There is an internal choice in Q11.					
Q 10	Let (X,T) and (Y,T') be topological spaces. A mapping $f: X \to Y$ is continuous iff inverse image of every open set in Y is an open set in X .	20	CO3		
Q 11	Show that every convergent sequence in a Hausdorff space has a unique limit OR	20	CO4		
	Show that a regular space is T_1 if and only if it is T_2 .				