Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Programme Name: M.Sc. Mathematics Semester: II
Course Name: Complex Analysis Time: 03 hrs
Course Code: MATH 7022 Max. Marks: 100

Nos. of page(s) : 02

Instructions: All questions are compulsory. Use of calculator is not allowed.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	CO	
Q1	Does the limit $\lim_{z\to 0} e^{\left(z+\frac{1}{z^4}\right)}$ exist? Justify your answer using suitable paths passing through the point $z=0$.	4	CO1	
Q2	Determine an analytic function $f(z)$ such that $Ref(z) = e^x(x \cos y - y \sin y)$.	4	CO1	
Q3	Evaluate the contour integral $\oint_C z ^2 d\overline{z} $ where contour <i>C</i> is the unit circle $ z-a =r$ oriented counterclockwise.	4	CO2	
Q4	If $k(>0)$ is an integer, then find the radius of convergence of power series $\sum_{n=1}^{\infty} (n+k) \ln(n+1) \ z^{k(n!)}$	4	CO3	
Q5	Find the points on complex plane where the function $f(z) = z + \frac{1}{3z^3}$ is not conformal. Also determine the magnification factor at the critical points.	4	CO4	
	SECTION B			
Q 6	Find the residue of the function $f(z) = \frac{e^{\frac{1}{z}}}{\sinh z}$ at the singularity $z = 0$.	10	CO1	
Q7	Suppose $f = u + iv$ is entire such that $u^2 \le v^2 \ \forall z \in \mathbb{C}$. Is $f \equiv$ constant? Prove or give counterexample to discard the statement.	10	CO2	

set $r < z - 1 < R$ to comment correctly on the nature of singularity for $f(z) = \frac{z}{z^2 - 1}$ at the point $z = 1$. Q9 Suppose C is an arbitrary closed simple curve on complex plane not passing through $z = 0$ with unknown orientation. Evaluate the integral $\frac{1}{2\pi i} \oint_C \frac{\sin \frac{1}{z}}{z^2 - 1} dz$	CO2			
Q9 Suppose C is an arbitrary closed simple curve on complex plane not passing through $z = 0$ with unknown orientation. Evaluate the integral				
through $z = 0$ with unknown orientation. Evaluate the integral				
1				
$1 \int \sin \frac{1}{z}$				
$\frac{1}{2\pi i} \oint_C \frac{z}{ze^{\frac{1}{z}}} dz$				
OR 10	CO3			
Suppose C is a circle $ z = \frac{1}{2}$ oriented counterclockwise and $f(z) = e^z/g(z)$				
where $g(z)$ is a polynomial of degree 10 having simple zeroes that are equally				
spaced within the interval [0,9] of real axis. If $g(0) = g(9) = 0$, find the				
value of				
$\oint_C f(z)dz$				
SECTION-C				
(2Qx20M=40 Marks)				
Q10 (i) Find the image of $\{z \in \mathbb{C} \mid z < 1, Im(z) \ge 0\}$ under the linear fractional				
transformation $w(z) = \frac{z+2}{z-1}$.	CO4			
(ii)Construct a linear transformation that maps the line $x + y = 1$ on z —plane				
onto the circle $ w = 1$ on w —plane.				
Q11 Consider $f(z) = \frac{e^{\frac{1}{z}}}{1-\cos z}$.				
(i) Determine all the singularities of $f(z)$.				
(ii) Discuss the nature of singularity $z = 0$ of $f(z)$.				
(iii) Let C is the circle $z = e^{i2\theta}$ where $\theta \in [0,2\pi)$				
$ \oint z^2 f(z) dz $				
(iv) Find the order of poles at $z=2\pi k, k \in \mathbb{Z}\setminus\{0\}$.	CO3			
OR				
Find the principal value of the real integral				
$\int_{-\infty}^{\infty} \frac{\sin x}{x(x^2 - x + 2)} dx ,$				
by clearly showing how the value of the integral $\int \frac{e^{iz}}{z(z^2-z+2)} dz \rightarrow 0$ along the				
semicircular arc in upper half complex plane.				