Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Electrochemical Thermodynamics Semester: II
Program: MSC Chemistry Time: 03 hrs.

Course Code: CHEM7064 Max. Marks: 100

Instructions: Read all the questions carefully. There is a choice in section B and C for question 9 and 11.

SECTION A (5Qx4M=20Marks)

	(- 6		
S. No.		Marks	CO
Q 1	Explain thermodynamic probability by relating macrostates and microstates	4	CO1
Q 2	Depict the indistinguishable factors in ammonia molecules.	4	CO2
Q 3	Determine the mean activity of the Na ₂ SO ₄ molecule based on its concentration and activity coefficient, using its dissociation reaction.	4	CO3
Q 4	Write the expression for the rotational partition function when the characteristic rotational temperature is lower than the applied temperature.	4	CO2
Q 5	Compare the Gibbs function and Helmholtz function by highlighting four key differences.	4	CO1
	SECTION B		1
	(4Qx10M= 40 Marks)		
Q 6	A company manufactures four types of chocolates: 20% dark, 35% milk, 25% sweet, and 20% with nuts. Given a batch of 100 chocolates, what is the probability that it contains exactly 50 dark, 15 milk, 25 sweet, and 10 nut chocolates.	10	CO1
Q 7	Point out the relation between enthalpy and partition function for a thermodynamic system.	10	CO2
Q 8	Emphasize Einstein's theory of specific heat capacity and discuss its limitations	10	CO2
Q 9	Find out the magnitude of $\frac{\theta_r(H_2) x \theta_r(D_2)}{\theta_r(HD)^2}$. θ_r is characteristic temperature of rotation and bond length being same for all the molecules. Or Present nuclear partition function for H ₂ (ortho) and H ₂ (para) molecule.	10	CO2

	SECTION-C (2Qx20M=40 Marks)				
Q 10	 i) Formulate the excess functions with respect to chemical potential and Gibbs free energy. ii) Determine the activity coefficients of 0.001 M NaCl and 0.001 M MgCl₂. 	10 + 10	CO3		
Q 11	i) Obtain the equation for the rate constant using transition state theory.ii) Illustrate the rate constant for unimolecular reaction based on Lindemann theory.				
	Or	10 + 10	CO3		
	i) Mention key features of collision theory of reaction rate				
	ii) Discuss the factors that influence the rate constant when an inert				
	electrolyte is added to an ion-interacting reaction, using Debye-Hückel				
	theory as a reference.				