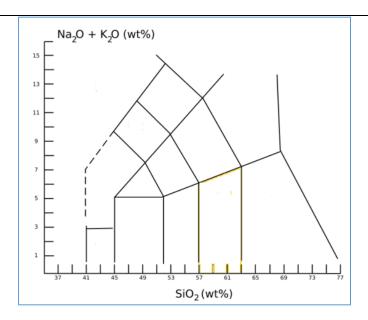
Name:	WUPES
Enrolment No:	UNIVERSITY OF TOMORROW

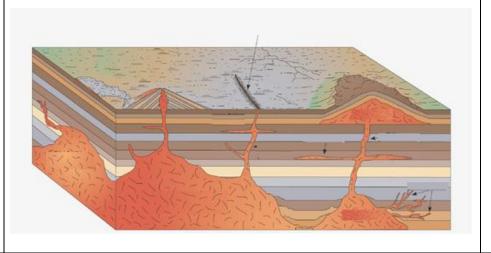
UPES

End Semester Examination, May 2025

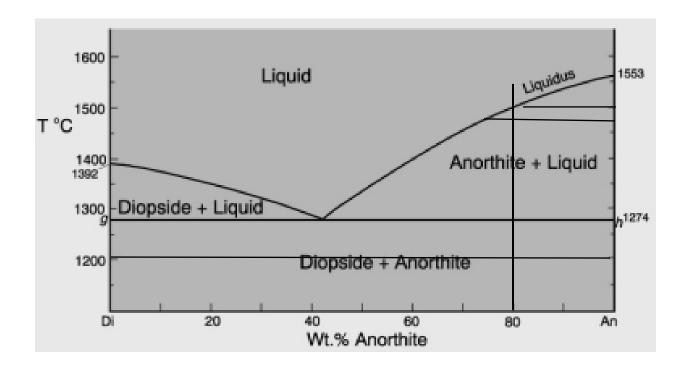
Programme Name: B. Sc Geology Semester : II
Course Name : Igneous Petrology Time : 03 hrs
Course Code : PEGS1010 Max. Marks: 100


Nos. of page(s): 04

S.


Attach the Binary Phase diagram with Answer-script Attach the CIPW sheet with Answer script Draw the diagram for Q 8 in Answer script

SECTION A (20 Marks)


S. No.		Marks	CO									
Q 1	Classify igneous rocks using tabular classification scheme	05	CO1									
Q 2	Explain the megascopic textures of Igneous rock	05	CO1									
Q 3	05	CO2										
Q 4	Differentiate between Cone-sheet and ring-dyke	05	CO2									
SECTION B (40 Marks)												
Q 5	Define the following	02*5 =10	CO1									
Q 6	Explain Ophitic and poikilitic texture, highlighting the relation between the two.	10	CO2									
Q7	a) Summarize degree of crystallinity and classify igneous texture based on the sameb) ii. Classify ophitic texture in Igneous rocks	5+5 =10	CO2									
Q 8	Using the TAS classification a) Classify the Volcanic igneous rocks b) Explain Phonolite c) Differentiate between Basalt and Picro-basalt	10	CO3									

ORIdentify and label (marked ones and unmarked ones) the various igneous forms and describe their characteristic features.

	SECTION C (40 Marks)							
Q 9	Classify Basalt and analyze the role of garnet in formation of various types of basalt/ basaltic magma.	20	CO3					
Q 10	Using a binary isobaric diagram, calculate the percentage of solid and liquid, along with their respective composition at different temperature conditions. The temperature conditions are 1490°C (T1), 1400°C (T2), 1274°C and composition of magma: An80Di20. OR Using CIPW Norm, calculate the Salic and Femic minerals, their abundance, and the rock class.	20	CO3					

Consti	ituents Of Rock	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeQ	MgO	CaQ	Na ₂ O	K ₂ O	H ₂ O	CO ₂	TiO ₂	P2O5	SO ₂	S	MnO					
Percen	tages(analysis)	49.68	36.13	2.49	8.88	1.13	0.79	0.25	0.32						П		Molecular			Gro	up of
Molec	cular Weights	60	102	160	72	40	56	62	94	18	44	80	32	355	19	71	Proportions	Molecular	Percentage		dard
Molecular Proportion															П		Troporation	Weights 60	NORM		eral
Quartz	SiO ₂																			Q	
Orthoclase	K ₂ O, Al ₂ O ₃ , 6SiO ₂																	556			
Albite	Na ₂ O, Al ₂ O ₃ , 6 SiO ₂																	524			
Anorthite	CaO, Al ₂ O ₁ , 2 SiO ₂																	278		F	
Leucite	K2O, Al ₂ O ₃ , 4 SiO ₂																	436			
Nepheline	Na2O, Al ₂ O ₃ , 2 SiO ₂																	284		L	Salic
Corundum	Al ₂ O ₃														П			102		С	Group
Acmite	Na ₂ O, Fe ₂ O3, 4SiO ₂																	462			
	CaO, SiO2																	116			
	MgO, SiO2																	100			
Diopside	FeO, SiO2																	132			
Wollastonite	CaO, SiO2														П			116			
	MgO, SiO2																	100			
Hypersthene	FeO, SiO2																	132		P	
	2MgO, SiO2																	140			
Olivine	2FeO, SiO2														П			204		0	
Magnetite	FeO, Fe ₂ O ₃																	232]
Haematite	Fe ₂ O ₃																	160			
Ilmanite	FeO, TiO2																	152		M	
Pyrite	FeS ₂														П			120			
Apatite	3Cao, P ₂ O ₃ , 1/3CaF ₂																	336			Femic
Calcite	CaO.CO ₂																	100		A	Group