Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Engineering Mechanics

Program: B. Tech ASE/AE/FSE/SE/Civil

Course Code: MECH 1002

Semester : II

Time : 03 hrs.

Max. Marks: 100

Instructions: Assume data wherever necessary. Show all calculations clearly. Use of a scientific calculator is permitted.

SECTION A (5Qx4M=20Marks)

	(5QA411-2011a1 N5)		T
S. No.		Marks	CO
Q 1	State and prove the parallel axis theorem.	4	CO1
Q 2	A system of forces is acting at the corners of a rectangular block as shown in the Figure. Determine the magnitude and direction of the resultant force. 50 kN 20 kN 25 kN	4	CO2
Q 3	Explain the following: (i) Angle of friction, angle of repose & kinetic friction. (ii) Steps followed in the analysis of the truss by the method of section.	4	CO1
Q 4	Explain the Cone of Friction with a neat sketch.	4	CO2
Q 5	State and explain Lami's Theorem.	4	CO1
	SECTION B		1
	(4Qx10M=40 Marks)		
Q 6	Explain the types of beams and types of loads acting on a beam with the help of a neat sketch.	10	CO2
Q 7	Determine the time required for a car to travel 1 km along a road if the car starts from rest, reaches a maximum speed at some intermediate point, and then stops at the end of the road. The car can accelerate or decelerate at 1.5 m/s ² .	10	CO3
Q 8	A particle having a mass of 8 kg starts from rest and attains a speed of 1.5 m/sec at a horizontal distance of 10 m. Assuming a coefficient of friction of 0.2 and uniformly accelerated motion, what is the smallest	10	CO3

value of a constant horizontal force P that may be required to get this motion? Refer to the figure given below.		
N a		
$F = \mu N$ $(8 \times 9.81) \text{ N}$		
Q 9 Determine the force P required to move the block A of 5000 N weight up the inclined plane. The coefficient of friction between all contact surfaces is 0.25. Neglect the weight of the wedge, and the wedge angle is 15 degrees.		
A 15°		
OR	10	CO4
An object is projected so that it must clear two obstacles, each 7.5 m high, which are situated 50 m from each other, as shown in Fig. If the time of passing between the obstacles is 2.5 s, calculate the complete range of projection and the initial velocity of projection.		
Obstacle 1 P Obstacle 2		
7.5 m 7.5 m		
$\begin{array}{c} 50 \text{ m} \\ t = 2.5 \text{ s} \end{array}$		
ο θ 50 m		

