Name:

Enrolment No:

Semester: II

Time: 03 hrs.

UPES

End Semester Examination, May 2025

Course: Chemical Thermodynamics & Solution Program: BSc (H) Chemistry by Research

Course Code: CHEM1031 Max. Marks: 100

Instructions: Answer all the questions. Internal choices are provided in Question No. 9 and Question N. 11. Students can use scientific calculators.

SECTION A

S. No.		Marks	CO
Q 1	Calculate the free-energy change which occurs when one mole of an ideal gas expands reversibly and isothermally at 300 K from the initial volume of 5 litres to 50 litres.	04	CO1
Q 2	Describe Le-chatlier's principle with example.	04	CO1
Q 3	Derive the relation between ΔU and ΔH for an ideal gas.	04	CO1
Q 4	The vapour pressure of a 5% aqueous solution of non-volatile organic substance at 373 K is 745mm. Calculate the molecular mass of solute.	04	CO1
Q 5	Calculate the standard free energy change of the reaction $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + H_2O(l)$ And say whether this reaction is feasible at 25°C and 1 atm pressure. The standard free energies of formation of NH ₃ (g), NO(g), H ₂ O(l) are - 16.65, 86.61 and -237.20 KJ/mol, respectively.	04	CO3
Q 6	Derive the expression of Gibbs Duhem equation and also write its significance.	10	CO2
Q 7	Calculate the free-energy change accompanying the compression of 1 mole of CO ₂ at 57°C from 5 atm to 50 atm. Assume that CO ₂ behaves like an ideal gas.	10	CO2
Q 8	A solution of 12.5 g of urea in 170 g of water gave boiling-point elevation of 0.63K. Calculate the molar mass of urea. K _b = 0.52 K Kg/mol.	10	CO1
Q 9	One mole of ideal gas is heated at constant pressure from 0°C to 100°C. (a) Calculate the work involved. (b) If the gas were expanded isothermally and reversibly at 0°C from 1 atmosphere to some other pressure P, what must be the final pressure if the isothermal work is equal to the work in (a)? Or	10	CO3

	Derive the equation for change in free energy for a process under			
	isothermal condition.			
SECTION-C				
	<u>, </u>		T	
Q 10	(a) Calculate the standard free energy change of the reaction			
	$CO + \frac{1}{2}O_2(g) \rightarrow CO_2(g) \qquad \Delta H^{\circ} = 270KJ$			
	Standard entropies of CO ₂ , CO and O ₂ are 205, 190 and 200 J/degree mole respectively. Predict whether the reaction is feasible or not.	10 + 10	CO2	
	(b) Describe Henry's law along with its limitations and also discuss applications of Henry's law.			
Q 11	(a) Derive the thermodynamic derivation of relation between Gibbs free energy of reaction and reaction quotient.			
	(b) Calculate the freezing point of a solution containing 0.520g glucose ($C_6H_{12}O_6$) in 80.2 grams of water. For water, K_f =1.86 K Kg/mol.			
		10 + 10	CO3	
	Or			
	One mole of an ideal mono-atomic gas at 27°C expands reversibly and adiabatically from a volume of 10 dm ³ to volume 20 dm ³ . Calculate (i) q (ii) ΔU (iii) w and (iv) ΔH . Assume that $C_v = 3/2$ R.			