Name:

Enrolment No:

UPES End Semester Examination, May 2025

Course: Mathematical Physics II Semester: II

Program: B.Sc. (Hons.) Physics Time : 03 hrs.
Course Code: PHYS1034 Max. Marks: 100

Instructions: Read the questions carefully and provide needed details only.

Non-programmable Scientific calculator is allowed.

SECTION A (5Q \times 4M = 20 Marks) Answer all questions

S. No.		Marks	CO
Q 1	Show that $(\mathbb{C}; +)$ is an infinite Abelian group. Where, \mathbb{C} is a set of complex numbers.	4	CO1
Q 2	Prove that $\frac{d}{dx}(x^{-n}.J_n) = -x^{-n}J_{n+1}$. Where J_n represents Bessel Function.	4	CO3
Q 3	Evaluate $\int_0^\infty \frac{x^a}{a^x} dx$ using Gamma function.	4	CO3
Q 4	A die is thrown 8 times. Calculate the probability that 3 will show at least seven times.	4	CO2
Q 5	Define error function (Probability integral) and complementary error function.	4	CO1

SECTION B

 $(4Q \times 10M = 40 \text{ Marks})$

Q6, Q7 & Q8 are compulsory; there is an internal choice for Q9

Q 6	Show that $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \omega^2 \\ \omega & 0 \end{pmatrix},$	10	CO1
	$\begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix}$, where $\omega^3 = 1$, $\omega \neq 1$ form a group with respect to matrix multiplication.	10	

Q 7	Establish the relation between Beta function and Gamma function as		
	$\beta(m,n) = \frac{\Gamma m. \Gamma n}{\Gamma(m+n)}$	10	CO2
Q 8	Verify that $J_n(x)$ is the coefficient of z^n in the expansion of $e^{\frac{x}{2}(z-\frac{1}{z})}$.	10	CO1
Q 9	Prove that the Rodrigue's formula for Legendre function is $\int_{-1}^{+1} x^m P_n(x) dx = 0,$ where m, n are positive integers and $m < n$, \mathbf{OR} Demonstrate that $P_n(x)$ is the coefficient of z^n in the expansion of $(1-2xz+z^2)^{-\frac{1}{2}}$ in ascending powers of z .	10	CO3
SECTION-C (2Q×20M = 40 Marks) Q10 is compulsory; there is an internal choice for Q11			
Q 10	Apply Power Series method to solve the Bessel's differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0.$	20	CO4
Q 11	A rod of length l with insulated sides is initially at a uniform temperature u . Its ends are suddenly cooled to 0° C and are kept at that temperature. Apply this information to prove that the temperature function $u(x,t)$ is given by $u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \cdot e^{-\frac{c^2\pi^2n^2t}{l^2}}$ where b_n is determined from the equation. OR	20	CO4

$\partial^2 u$		$\partial^2 u$
$\frac{\partial t^2}{\partial t^2}$	=	$\frac{\partial x^2}{\partial x^2}$

The length of the string is π and the ends are fixed. The initial velocity is zero and initial deflection is $u(x,0) = 2(\sin x + \sin 3x)$. Apply, these boundary conditions to determine the deflection u(x,t) of the vibrating string for $t \ge 0$.