Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course : THERMAL PHYSICS Semester : II
Program : BSc PHYSICS BY RESEARCH Time : 03 hrs.

Course Code: PHYS1033 Max. Marks: 100

Instructions:

• All questions are compulsory (Q9 and Q11 have an internal choice).

• Use of scientific calculator is allowed.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	Explain the following formulations of the second law of thermodynamics:		
	(a) Kelvin Plank statement	2	CO1
	(b) Clausius statement	2	
Q 2	Derive the expressions for specific heats at constant volume (C_V) and constant pressure (C_P) , and hence obtain the relation:		
	$C_P - C_V = R$	4	CO1
	Where symbols have their usual meanings.		
Q 3	Starting from the definition of a second-order phase transition, derive the Ehrenfest relation:		
	$\frac{dP}{dT} = \frac{CP_2 - CP_1}{VT(\alpha_2 - \alpha_1)}$	4	CO1
	Where symbols have their usual meanings.		
Q 4	Explain the construction and working of the apparatus used to achieve low temperatures based on the principle of Adiabatic Demagnetization.	4	CO2

Q 5	(a) Explain Boyle temperature.					
	(b) Show that the relation between the Boyle temperature "T _B " and the critical temperature "T _C " is given by:	2	CO2			
	$T_{\rm B} = 3.38 {\rm T}_{\rm C}$	2				
	SECTION B					
	(4Qx10M= 40 Marks)					
Q 6	In the Van der Waals equation below, derive the expression for the volume correction term (b):					
	$\left(P + \frac{a}{V^2}\right) (V - b) = RT$	10	CO1			
	Where symbols have their usual meanings.					
Q 7	Calculate the increase in entropy when 50 grams of ice at -10 °C are converted into steam at 100 °C. Given that:					
	Specific heat of ice = $2090 \text{ J Kg}^{-1} \text{ K}^{-1}$,					
	Specific heat of water = 4180 J Kg ⁻¹ K ⁻¹ ,	10	CO2			
	Latent heat of ice = 3.35×10^5 J Kg ⁻¹ , and					
	Latent heat of steam = $2.26 \times 10^6 \text{ J Kg}^{-1}$					
Q 8	Derive the following Maxwell's first and second thermodynamical relations:					
	(a) $\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$	5	CO3			
	(b) $\left(\frac{\partial T}{\partial P}\right)_{S} = + \left(\frac{\partial V}{\partial S}\right)_{P}$	5				
Q 9	Explain the porous-plug experimental setup for the production of low temperature.	10	CO4			

	OR					
	Derive the expression of the Joule Thomson coefficient " μ " for a Van der Waals gas and hence obtain the expression of the temperature of inversion $\left(T_i = \frac{2a}{bR}\right)$. Where symbols have their usual meanings.					
SECTION-C						
(2Qx20M=40 Marks)						
Q 10	(a) Explain "Thermodynamic Scale of Temperature"	5				
	(b) Find the mean free path, frequency of collision and molecular diameter of a gas, given the viscosity of gas $\eta = 160 \times 10^{-7} \text{ N m}^{-2}$ per unit velocity gradient, average velocity $\overline{c} = 4.2 \times 10^2 \text{ ms}^{-1}$, density $\rho = 1.25 \text{ kg m}^{-3}$ and number of molecules per m ³ = 3.5 x 10 ²⁵ .	15	СО3			
Q 11	Explain the construction and working of Andrews' experiment to study real gas behavior. Illustrate and explain the isothermals from Andrews' experiment at 13.1 °C, 21.5 °C, 31.1 °C, 35.5 °C and 48.1 °C. Depict and describe the 'border curve' and the 'critical point'.					
	OR					
	Derive the following Clausius inequality considering a heat engine sandwiched between two refrigerators and all three operating between multiple heat reservoirs:	20	CO4			
	$\oint \frac{\delta H}{T} \le 0$					
	And explain its physical significance.					