Name:

**Enrolment No:** 



**Semester:** II

Time: 03 hours

Max. Marks: 100

## **UPES**

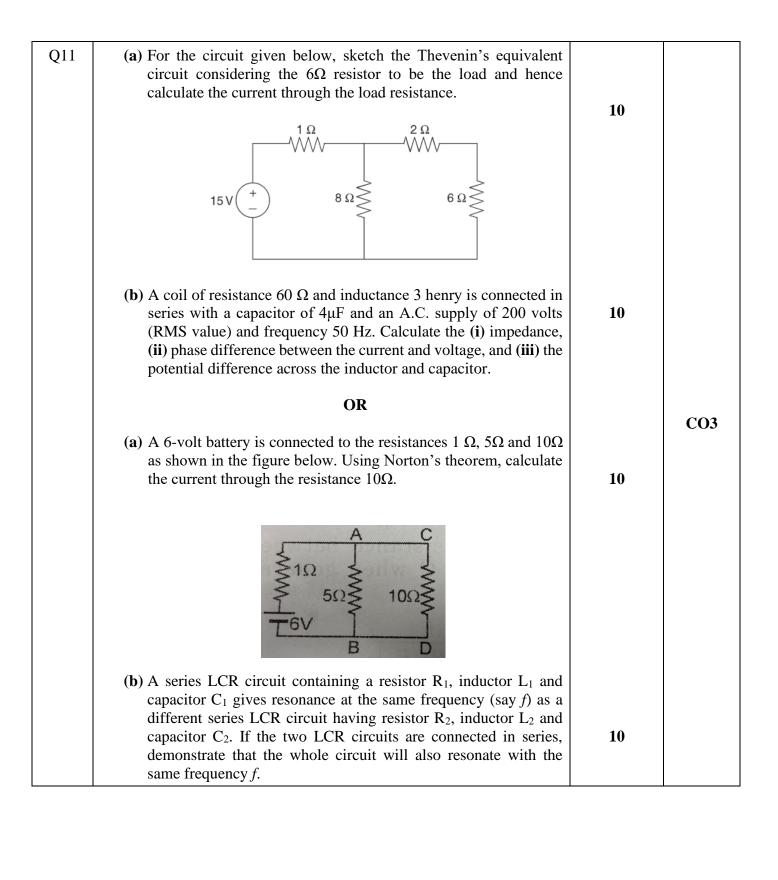
## **End Semester Examination, May 2025**

**Course:** Electricity and Magnetism

**Program:** B.Sc. (H) Physics / B.Sc. (H) Physics by Research

**Course Code:** PHYS1013

No. of pages: 3


**Instructions:** Use of scientific calculators is permitted. All symbols have their usual meaning. Use appropriate

diagram/schematic wherever necessary.

## SECTION A (5Qx4M=20Marks)

|        | (5QA+111-2011a1 K5)                                                                                                                                                                                                                                                                  |       |     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| S. No. |                                                                                                                                                                                                                                                                                      | Marks | СО  |
| Q1     | State True or False:  (a) For time varying fields, the divergence of $\overrightarrow{B}$ is non-zero.  (b) For a conductor, any <i>net</i> charge always resides on the surface.  (c) Magnetic forces cannot perform work.  (d) Diamagnetic materials have positive susceptibility. | 4     | CO1 |
| Q2     | The magnetic flux through a coil is given as $\Phi = (4t^2 + 5t + 12)$ milliwebers. What would be the magnitude of the induced current in the coil at $t = 3$ seconds if the resistance in the loop is 29 m $\Omega$ ?                                                               | 4     | CO1 |
| Q3     | Discuss in brief ferromagnetic and anti-ferromagnetic materials (with one example for each).                                                                                                                                                                                         | 4     | CO1 |
| Q4     | Prove that for time varying electromagnetic fields, $\vec{E}$ is non-conservative.                                                                                                                                                                                                   | 4     | CO2 |
| Q5     | Using the Ampere's Circuital Law, derive an expression for the magnetic flux density $\vec{B}$ due to a solenoid.                                                                                                                                                                    | 4     | CO2 |
|        | SECTION B (4Qx10M= 40 Marks) Question 9 has an internal choice.                                                                                                                                                                                                                      |       |     |
| Q6     | Using the Biot-Savart law, derive an expression for the magnetic field $\vec{H}$ at an arbitrary point due to a current carrying straight wire of finite length.                                                                                                                     | 10    | CO2 |
| Q7     | Using the continuity equation $(\frac{\partial \rho_v}{\partial t} = -\vec{\nabla} \cdot \vec{J})$ , prove that there is an exponential decay of the volume charge density with time in a material (assume that at $t = 0$ , $\rho_v = \rho_v^0$ ).                                  | 10    | CO2 |
| Q8     | A rectangular loop carrying current I <sub>2</sub> is placed parallel to an infinitely long straight wire carrying current I <sub>1</sub> as shown in the figure below. Illustrate that the force experienced by the rectangular loop is given by                                    | 10    | CO4 |

|     | $\vec{F} = -\frac{\mu_o I_1 I_2 b}{2\pi} \left[ \frac{1}{\rho_o} - \frac{1}{\rho_o + a} \right] \widehat{a_\rho}$                                                                                                                                           |    |     |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|--|
|     | $I_1$ $I_2$ $b$ $\rho$                                                                                                                                                                                                                                      |    |     |  |  |
| Q9  | Apply the 'method of images' to determine the potential $V(x, y, z)$ in the region $z > 0$ for the charge distribution given in the figure (point charge $q$ held a distance $d$ above an infinite grounded conducting plane lying on the $x$ - $y$ plane). | 10 | CO3 |  |  |
|     | OR                                                                                                                                                                                                                                                          |    |     |  |  |
|     | In the case of two different dielectric materials, demonstrate that the                                                                                                                                                                                     |    |     |  |  |
|     | tangential component of the electric field intensity $\vec{E}$ and the normal                                                                                                                                                                               |    |     |  |  |
|     | component of the electric flux density $\vec{D}$ are both continuous across the boundary between the two dielectrics (assume that there is no free charge present at the boundary).                                                                         |    |     |  |  |
|     | SECTION-C                                                                                                                                                                                                                                                   |    | •   |  |  |
|     | (2Qx20M=40 Marks) Question 11 has an internal choice.                                                                                                                                                                                                       |    |     |  |  |
| Q10 | Analyze a series LCR circuit to obtain (i) the current, (ii) phase difference between current and applied voltage, (iii) impedance, and (iv) resonance frequency. Hence plot $X_L$ , $X_C$ , $R$ , and $Z$ as a function of $\log \omega$ .                 | 20 | CO4 |  |  |

