Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Calculus Program: B.Sc. (H) Physics/Chemistry/Geology by Research

Course Code: MATH1030

Semester: II Time: 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory. Scientific calculator is allowed.

SECTION A
(5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	Check Rolle's theorem is applicable or not for the function $f(x) = 1 - (x-1)^{\frac{2}{3}}, 0 \le x \le 2.$ If not, justify the reason.	4	CO1
Q 2	Prove that the length of the subnormal at any point of the curve $x^2y^2 = a^2(x^2 - a^2)$ very inversely as the cube of its abscissa.	4	CO2
Q 3	If $z^3 - xz - y = 0$, prove that $\frac{\partial^2 z}{\partial x \partial y} = -\frac{3z^2 + x}{(3z^2 - x)^3}.$	4	CO2
Q 4	Evaluate $\iint \sqrt{x^2 + y^2} dx dy$, over the region bounded by $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.	4	CO3
Q 5	Using the definition of Beta function, prove that $B(u,v) = 2 \int_0^{\pi/2} \sin^{2u-1}\theta \cos^{2v-1}\theta d\theta.$	4	CO4

SECTION B (4Qx10M = 40 Marks)

If $y = \log(x + \sqrt{x^2 + 1})$, prove that

Q 6 Hence show that $y_{2n}(0) = 0$ and $y_{2n+1}(0) = (-1)^n (1^2 + 3^2 + 5^2 \dots (2n-1)^2).$ CO₂ 10

Q 7	If $u = \frac{1}{3} \log \left(\frac{x^3 + y^3}{x^2 + y^2} \right)$, find the value of (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.	10	CO1	
Q 8	Verify for the spherical coordinate transformation $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, Jacobian $J = r^2 \sin \theta$.	10	CO4	
Q 9	Change the order of integration and hence evaluate $\int_0^1 \int_0^{\sqrt{1-y^2}} \frac{\cos^{-1} x}{\sqrt{1-x^2} \sqrt{1-x^2-y^2}} dx dy.$ OR Change the order of integration and hence evaluate $\int_0^1 \int_x^{\frac{1}{x}} \frac{y}{(1+xy)^2(1+y^2)} dx dy.$	10	СО3	
SECTION-C (2Qx20M=40 Marks)				
Q 10	State and prove the relation between Beta and Gamma functions	20	CO4	
Q 11	. Evaluate $\iiint x^2 + y^2 + z^2 dx dy dz$, over the region bounded by the surfaces $xy = 4$, $xy = 9$, $yz = 1$, $yz = 4$, $zx = 25$, $zx = 49$. OR Evaluate $\iiint x^2 + y^2 dx dy dz$, over the region bounded by the paraboloid $x^2 + y^2 = 3z$ and the plane $z = 3$.	20	CO3	