Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Analytical Geometry

Program: B.Sc. (H) Mathematics By Research

Course Code: MATH 1069

Semester: II Time

: 03 hrs.

Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО	
Q 1	Derive the equation of the ellipse whose focus is at $(-1,1)$, directrix $x - y + 3 = 0$ and eccentricity is $1/2$.	4	CO1	
Q2	Compute the points of intersection of the line $\frac{x+3}{4} = \frac{y+4}{3} = \frac{z-8}{-3}$ and the sphere $x^2 + y^2 + z^2 + 2x - 10y = 23$.	4	CO2	
Q3	Determine the equation of the straight line which passes through the intersection of the straight lines $2x - y + 1 = 0$, $x + y - 7 = 0$ and is perpendicular to the straight line $6x - 7y + 8 = 0$.	4	CO1	
Q4	Convert the spherical coordinates $(8, \frac{\pi}{3}, \frac{\pi}{6})$ to both rectangular and cylindrical coordinates.	4	CO2	
Q5	Find the equation of the right circular cylinder of radius 2 whose axis is the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$.	4	CO2	
SECTION P				

SECTION B (4Qx10M= 40 Marks)

Q 6	Find the equation for the circle that touches the axis of y at a distance $+4$ from the origin and cuts off an intercept 6 from the axis of x .	10	CO1
Q7	Derive the equation of the cone whose vertex is the point $(1,1,0)$ and whose guiding curve is $y = 0$; $x^2 + z^2 = 4$.	10	CO2

Q8	Let S_1 and S_2 be two spheres with centers at $(0,0,0)$ and $(1,1,0)$, and radii r_1 and r_2 , respectively. Determine the angle at which the two spheres intersect, in terms r_1 and r_2 .	10	CO2	
Q9	Let S_1 and S_2 be two spheres in coordinate space. Prove that if S_1 and S_2 have a nonempty intersection, then the set of intersection points forms a circle. OR Prove that the perpendiculars drawn from the origin to the tangent planes to the cone $ax^2 + by^2 + cz^2 = 0$ lie on the cone $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0.$	10	CO2	
SECTION-C (2Qx20M=40 Marks)				
Q 10	Define the notion of a tangent line to a conicoid. Determine whether the line $\frac{-(x+5)}{3} = y - 4 = \frac{z-11}{7}$ is a tangent to the conicoid $12x^2 - 17y^2 + 7z^2 = 7$.	20	CO3	
Q 11	Show that the plane $3x + 12y - 6z - 17 = 0$ touches the conicoid $3x^2 - 6y^2 + 9z^2 + 17 = 0$ and find the point of contact.			
	OR	20	CO3	
	Prove that from any given point six normal can be drawn to a central conicoid.			