Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Real analysis I Semester : II Program: B.Sc. (H) Mathematics by Research Time : 03 hrs. Course Code: MATH1068 Max. Marks: 100

Instructions: Attempt all questions. There is an internal choice in Q 9 and Q 11. SECTION A (5Qx4M=20Marks)				
Q 1	State and prove the Archimedean property of \mathbb{R} .	4	CO1	
Q 2	Define uniform continuous function. Is $f(x) = x^3$ uniform continuous on \mathbb{R} .	4	CO3	
Q 3	Find the supremum and infimum of the following sets, if they exist: (1) $A = \{x \in \mathbb{R} : 2x + 5 > 0\}$ (2) $B = \{x \in \mathbb{R} : x < \frac{1}{x}\}$	4	CO1	
Q 4	Use limit theorems to show that $\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0.$	4	CO2	
Q 5	Find the interior points of the set of natural numbers N. Is this an open set? Justify your answer.	4	CO1	
	SECTION B (4Qx10M= 40 Marks)		1	
Q 6	Using definition of limit of a sequence, show that $\lim_{n\to\infty} \frac{2n+10}{n+5} = 2.$	10	CO2	
Q 7	Define Cauchy sequence and show that $x_n = 1 + (-1)^n$ is not a Cauchy sequence.	10	CO2	
Q 8	Show that finite set has no limit point. Does every infinite set have a limit point. Justify your answer.	10	CO1	

Q 9	Define Lipschitz function. Show that $f(x) = x^2$ is not a Lipschitz function on $(2, \infty)$. OR Let $f(x) = \cos \frac{1}{x^2}$ and $g(x) = \sin \frac{1}{x}$. Using sequential criterion of limit, show that $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0} g(x)$ does not exist.	10	СОЗ
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Check the uniform continuity of the following functions on the set A : $(1) f(x) = \sin\left(\frac{1}{x}\right), A = [0, \infty)$ $(2) f(x) = \frac{1}{x^2}, A = (0, \infty)$ $(3) f(x) = \frac{1}{1+x^2}, A = \mathbb{R}$ $(4) f(x) = \frac{1}{x}, A = (0, \infty)$ $(5) f(x) = x^2, A = [2,5]$	20	CO3
Q 11	Show that a sequence {x _n } of real numbers is convergent if and only if it is Cauchy. OR Justify your answer with example in the following cases: (a) Every monotonic sequence is a convergent sequence. (b) Every bounded sequence is a Cauchy sequence. (c) Every divergent sequence is unbounded. (d) Sequence having a unique limit point is a Cauchy sequence. (e) Every sequence has a convergent subsequence.	20	CO2