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ABSTRACT 

Effectual understanding of lithium-ion cell and battery pack (LIB) level performance assessment 

and capacity degradation mechanism is essential for development of fossil free mobility segment 

in future. LIBs, being a thermo- electro- mechanical device undergoes several performance 

degradation mechanisms, which are still not fully understood and decoded. Methodologies based 

on machine learning (ML) is fast gaining popularities but still a lot of work is needed. As the 

degradation is due to electrochemical main and side reactions, causing component level decay, 

only physics based or ML based modeling is not sufficient, as they are complementary to each 

other’s but have their own challenges and limitations. Hybridization of ML with physics-based 

methodologies are current flavor and only limited work has been carried out. 

Several important internal & external factors influence the design of LIBs suitable for e-mobility 

applications, which are unique and widely differentiated from stationery applications. The 

complex interaction of cell to design of battery, design of vehicle, operational and environmental 

aspects play an active role than interplay of electrochemistry of various components of cell like 

chemical composition of electrodes and electrolyte, size & distributions of active material 

particles, thickness of electrodes, porosity of the electrodes, foam factor, cell dimensions, tab 

placement etc. 

This dissertation explores from identifying cell electro chemistries suitable for different types of 

widely used e mobility applications, namely e-2V and e-3V, which uses 1-5KWh battery packs 

predominantly made with NMC cylindrical cells for e-2V and LFP prismatic cells for e-3V 

applications along with basic to semi smart battery management system, which also estimates state 

of charge (SOC) and state of health (SOH), which are two intertwined characteristics of the states 

of LIBs. The survey also revealed that SOC & SOH are mostly done through high error open 

circuit voltage or Coulomb count method. A thorough review of available research also revealed 

that the majority of the experimental studies are either done on cell level or under a narrow band 

of environmental or operational conditions.   

With identified gaps, this study is further divided into two parts; in the first part, capacity 

degradation of NMC cells are experimentally derived under distinguished environmental (15℃, 
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25℃, 35℃) and operational conditions (1C & 2C discharge rate) and results are derived for both 

charging and discharging capacity with 0-100% SOC. Full capacity degradation is used as input 

feature for SOC estimation using multiple ML algorithms, namely, , Decision trees (DT), K-

Nearest Neighbor (KNN), Random forest (RF) are employed for estimating multiple error metrics, 

namely, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE) and Mean Absolute Percentage Error (MAPE). The results obtained outclasses several 

other ML methods under wide spectrum of environmental and operational conditions.  

In the second part, a battery pack (4.4kWh) with LFP prismatic cell is made for experimental 

analysis. A thorough analysis has been carried out on its capacity- open circuit voltage variance 

and a novel and executable methodology is proposed on making battery pack by way of cell 

capacity and voltage making over full discharge voltage profile, highlighting the complexity of 

LFP cell’s knee- plateau- elbow region analysis. The battery pack was made successfully tested 

for several charge- discharge cycles and SOC estimation was carried out using full voltage profile 

with Linear Regression (LR) algorithm. The error metrics of the battery pack are not in 

confirmatory to the results of cell, which is a clear indication that performance assessment 

methodology via cell is not a robust method and that; battery pack level performance assessment 

is a necessity.  

The scientific innovation of this paper is to introduce an optimized ML technique for SOC and 

SOH evaluation towards the advancement of sustainable EV technologies, which shall have huge 

attention for their enhanced learning capability, generalization performance, convergence speed, 

and high accuracy, hence it can be ideal to address the complex and nonlinear characteristics of 

LIBs, which shall have a proper combination of ML algorithm and optimization technique not only 

resolves the computational complexity of ML algorithms but also achieves excellent solutions.  

The proposed ML-based state estimation methods are validated by multiple experiments under 

different operational and environmental conditions in order to prove the adaptability and 

generalization capability. In addition, the accuracy and robustness of the KNN and DT model are 

further verified with similar results reported by researchers. The proposed method is suitable for 

online BMS since the execution of state estimations in real-time is easy, effective, and fast due to 

low mathematical complications in the testing and training stage. 
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CHAPTER 1  

INTRODUCTION 

1.1  CHAPTER OVERVIEW  

The chapter overview outlines the structure of the document, beginning with a 

foundational exploration in the background section, which provides context and 

introduces the topic of electrochemical energy storage systems with and particular 

emphasis on lithium-ion batteries (LIB) and their applications in e-mobility. The 

electrochemical energy storage system section delves into the fundamental 

principles and mechanisms underlying such systems, laying the groundwork for 

further discussion. Subsequently, the document shifts focus to the use of LIB in 

electric mobility, examining their current usage and impact in the transportation 

industry. Moving forward, the lithium-ion batteries figure of merits section 

explores the various performance metrics and characteristics that are crucial for 

evaluating their effectiveness. The research objectives section outlines the specific 

goals and aims of the study providing insight into the intended contributions of the 

research. Finally, the chapter summary succinctly summarizes the key findings and 

conclusions discussed in the preceding sections, offering a comprehensive 

overview of the chapter.  

 1.2 BACKGROUND  

In the contemporary world, marked by a burgeoning global population and an 

unprecedented surge in technological advancement, the insatiable appetite for 

energy remains far from satiated. To quench this unyielding thirst for energy, 

humanity continues to deplete our finite natural resources. A staggering statistic 

reveals that 70.45% of the world's energy generation still hinges on the combustion 
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of fossil fuels and nuclear [1] , as graphically depicted in Fig. 1.1. While numerous 

alternatives have been tabled to address our present and future energy requirements, 

only a select few can truly rival fossil fuels in terms of both cost-efficiency and 

energy density [2]. The dual nature of efficiency improvements asserts that while 

innovation is crucial for reducing energy usage and improves greenhouse gas 

productions, the situation paradoxically tends to enable the growth and heightened 

resource consumption within civilization, at the same time, it challenges the 

conventional view linking global population growth directly to increased energy 

consumption, suggesting that population expansion could be a consequence of past 

efficiency gains, making it more feasible for societies to support larger populations 

[3]. Notwithstanding the substantial allocation towards clean energy, with 

investments surpassing 70%, amounting to $1740 billion as opposed to $1050 

billion in fossil fuel during 2023, the global consumption of primary energy 

continues to exhibit an upward trajectory. The domain of renewables, particularly 

spearheaded by solar energy, which attracted investments totaling $659 billion, 

along with EVs securing $129 billion in investments during the same period, are at 

the forefront of propelling the anticipated augmentation in clean energy funding in 

the forthcoming years. The momentum behind investments in clean energy 

emanates from a synergistic array of drivers, encompassing economic feasibility, 

ambitions pertaining to climate change mitigation and energy sovereignty, as well 

as blueprints for industrial advancement.  

 

Fig. 1.1  Global electricity generation by source. 
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This predicament catapults humanity into the midst of an urgent challenge: climate 

change, an outcome of the insidious "greenhouse effect" triggered by the 

widespread emission of CO2, primarily, and other greenhouse gases into our 

atmosphere. Climate change has evolved into a worldwide menace, demanding a 

comprehensive international initiative to address it. According to datasets 

presenting global monthly mean surface temperature from Berkeley Earth [4], the 

alarming conditions have already manifested as shown below in Fig. 1.2, and 

despite numerous endeavors, the situation remains elusive to control. 

 

Fig. 1.2  Raw land-surface average results through the Berkeley averaging 

method. 

It is within this context that the Paris Climate Agreement was conceived, 

representing a collective pledge to combat global warming. This historic accord 

unites the most influential countries worldwide, which also happen to be the 

foremost energy consumers, in a concerted mission to curtail the emission of 

"greenhouse gases". Global warming caused by human activity has increased by 

about 1.0 °C cover pre-industrial levels, most likely within a range of 0.8 to 1.2 °C. 

Between 2030 and 2052, global warming is forecasted to touch 1.5 °C if the current 

rate continues [5]. In different scenarios, the projected global warming under 

different initiatives based on pledges and current policies are as below and at 

alarming conditions as shown below in Fig. 1.3.  
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Fig. 1.3  Year 2050 Warming Projections: Emissions and expected warming. 

Lithium-ion based e-mobilities are increasingly recognized as a pivotal solution to 

combat global warming and address climate change. The performance of e-

mobilities is intricately linked to the characteristics of their energy storage systems, 

which exert a significant influence on both e-mobilities safety and consumer 

acceptance [6],[7]. In the current landscape, the LIBs industry stands as the 

dominant force meeting the energy storage demands of e-mobilities. However, the 

longevity and efficiency within lithium-ion batteries components are vital for 

sustaining optimal performance. Over time, degradation of these parts contribute to 

a decline in performance, resulting in loss of rated capacity due to an increase in 

internal impedance. This intricate process is influenced by a myriad of 

interconnected factors such as stress, temperature, chemical factor [8]. 

Understanding and addressing these factors is imperative for mitigating 

performance degradation, ensuring the sustained efficiency of LIB, and 

consequently, improving the overall performance and viability of e-mobilities. 

To effectively implement the action plan, it is imperative that various sectors 

outlined in Fig. 1.4 as shown below instigate the necessary transformations. At the 

same time, the growth in emissions by different sectors revealed that the electricity 

and heat, transport sectors are the largest contributors. Within these sectors, the 

transportation industry stands out as a significant contributor to greenhouse gas 

emissions, primarily due to its continued reliance on conventional vehicles powered 
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by fossil fuels, which often present notable advantages when compared to more 

environmentally friendly alternatives. 

 

 

Fig. 1.4  Greenhouse gas emissions by different sectors. 

During the past decade, e-mobility has emerged as a considerably more sustainable 

solution for surface transportation [9], significantly contributing to the reduction of 

our reliance on fossil fuels. While the automotive sector's shift away from internal 

combustion engine vehicles is well underway, it is important to acknowledge the 

existing challenges and barriers that need to be addressed to achieve our 

sustainability goals. The imperative to advance the electrification of transportation 

as shown in Fig. 1.5, bolster centralized and decentralized energy storage, and 

harness the dynamic strides in emerging technologies has never been more crucial.  

 

Fig. 1.5  Growth of e-mobility from 2016 till 2028. 
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This urgency is a direct response to the escalating levels of carbon emissions and 

the pressing need to address the resulting climate change and energy shortages. 

Electric mobility emits the least CO2, boasts the lowest maintenance expenses is 

ideal for higher adaptation of renewable energy sources, and has achieved 

significantly favorable total cost of ownership and the adaptation by leading 

countries and their advantages. Within this context, the significance of developing 

electrochemical energy storage systems that are emissions-free and the concurrent 

need for meticulous performance monitoring and optimization cannot be 

overstated. Among the array of energy storage solutions, LIBs unequivocally 

emerge as a standout choice [10]. Their prominence derives from a constellation of 

remarkable attributes, including exceptionally good energy & power densities, a 

commendably low self-discharge, and a significantly extended operational lifespan. 

These exceptional qualities have not only facilitated the widespread proliferation 

of portable electronic devices but have also catalyzed the remarkable growth 

observed in the e-mobility market [11]. 

It becomes evident that the automotive industry is embracing the transition towards 

e-mobility. 14% of all new cars sold in 2022 were electric, 9% in 2021 and 5% in 

2020, but till now e-mobility comprises only a minute fraction, around 1% or even 

less, of the global vehicle fleet. However, there are optimistic expectations that this 

figure will surge to approximately 31% by the year 2040. This signifies a significant 

transformation in the composition of the global vehicle fleet, reflecting the growing 

acceptance and adoption of e-mobility [12]. The advantages of e-mobility are 

several as it is energy efficient, environmentally friendly, has performance benefits, 

and reduces conventional energy dependencies. To meet the expectations, 

significant research attention from the scientific community in recent years has 

arisen for addressing concerns related to vehicles and especially towards LIB 

trustworthiness, safety, prognostics, and diagnostics in e-mobility and its charging 

infrastructure [13].  
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Pure e-mobility was first demonstrated in 1828 and showed a clear advantage over 

competing steam and petroleum-powered vehicles, making them the earliest 

technology to demonstrate such an advantage [14]. However, until 1980 petroleum-

powered vehicles dominated the market, and e-mobility was grossly ignored [15]. 

The last few decades have brought e-mobility into focus because of several 

opportunities and developments [16],[17]. From a requirement of 550 GWh in e-

mobility LIB requirement in 2022 [18], it is expected to reach over 900 GWh in 

2023. LIB consumes 65% of total global lithium production and demand is 

expected to soar to 188,000 MT by 2027. Among all vehicles, hardly 20% of all 2 

and 3-wheelers (which is 90% of the total vehicular population) are electric, which 

contributes to significant vehicular pollution [19],[20]. With the maturity in 

application and learning across different aspects, the demand from different 

perspectives has multi-folded [21]. From a consumer perspective, the 

classifications are different and are centered around uses for long-distance travel, 

mass transportation, performance vehicles, etc. [22]. From different points of view, 

the e-mobility ecosystem is categorized differently, but in meeting those 

expectations, serious techno-commercial objectives are to be achieved in a very 

short period [23].   

As highlighted by United Nations and World Economic Forum’s publications [24] 

the rapid urbanization of cities shall add over 2.5 billion by 2050 and crucial role 

of e-mobility in reducing carbon emissions, and the integration of cutting-edge 

technologies in energy systems collectively underpin the assertion that these 

developments are integral to the Fourth Industrial Revolution [25]. The multi-

objective oriented approach for the development of e-mobility batteries is centered 

on different aspects of cell and pack performance [26], [27], life, reliability, safety 

enhancement [28], futuristic BMS with cloud computing, better and precision 

estimation, connected etc., BOS meeting requirement of high current/ high voltage 

applications [29],[30] and other safety feature [31]. LIBs are true water-free 

batteries, and work on rocking chair mechanisms [32],[33] at present are 100 times 
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less than different petroleum-based fuels on different energy and power criteria 

[34],[35] as shown in Fig.1.6. 

 

Fig. 1.6  Comparison of volumetric and gravimetric energy density of 

different fuels with batteries. 

The future requirements from e-mobility and possibilities with LIB are to bring 

interesting features like hybridization [36],[37], high speed-high power-high 

capacity [38], integration of EV with grid [39], wireless charging, smart charging 

for a reliable and resilient grid, demand-charge mitigation via stationary storage 

[40], automated EV in ride-hailing fleets [41], charging technology validation and 

demonstration, managed charging by building loads or with multiple commercial 

buildings [42],[43], behind-the-meter energy storage [44],[45], wireless charging 

[46],[47], performing predictive analysis [48],[49], security and privacy threats 

associated with the e-mobility ecosystem [50]. Numerous researchers and engineers 

are working on component-level enhancement for low-temperature and high-

temperature application-oriented cathode, anode, electrolyte, separators, and 

multiple combinations with and without the help of artificial intelligence and 

coming up with novel cell chemistry [51]. At the same time, different national and 

international organizations had set ambitious targets for achieving petroleum 

performance parity within the next decade [52].  
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Fig. 1.7  Perception towards EV & impact on consumers’ preference. 

As the use of LIB continues to expand at an unprecedented rate, it is anticipated 

that the cost of batteries will drop to below $100 per kilowatt-hour very shortly, 

under different perspectives on technological learning, expert elicitation, etc. E-

mobility will be economically competitive with internal combustion engine (ICE) 

alternatives because of the predicted cost decrease. The transition from an 

electromechanically heavy to an information-intensive vehicle is another benefit of 

e-mobility. It provides an essentially blank canvas on which to quickly design safe, 

software-defined vehicles, with computing and related electronics serving as the 

primary enablers of these vehicles' features, functions, and value. The software, 

which has LIB at its core, also makes it possible to decouple the internal mechanical 

connections required in an ICE car, enabling remote or autonomous operation of e-

mobility [53].  

Policymakers promoting the shift to e-mobility are underestimating how messy, 

expensive, and time-consuming it will be and it is represented in Fig. 1.7. It clearly 

explains the general perception towards it and influences buyer’s preferences. The 
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shift to e-mobility is a complicated web of technological innovation, uncertainty, 

and complexity mixed with equal parts of hope and dysfunction in policymaking 

[54]. Buyer expectations are fairly resigned to the significant disruptions that will 

unavoidably transpire over the next several years and decades. 

1.3  ELECTROCHEMICAL ENERGY STORAGE SYSTEM 

The energy ecosystem relies on three fundamental components: generation, 

transmission, and distribution, followed by consumption. A fourth essential pillar 

is emerging in the form of energy storage. As energy generation resources shift 

from centralized systems to a more distributed setup, the critical demand for 

electrical energy storage across various applications is becoming increasingly 

pronounced [55]. The growing imperatives for optimizing the amount of energy 

generated and its effective utilization underscore the necessity for energy storage 

solutions. Energy can be stored in various forms, but major types of energy storage 

can be categorized as shown in Fig. 1.8. 

 

Fig. 1.8  Different types of energy storage systems. 

Storage systems harness the power of reversible chemical reactions to store 

electrical energy in the guise of chemical potential. Batteries stand as the 
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predominant example of electrochemical storage, finding utility across a wide array 

of applications within power systems. Diverse battery chemistries exist, each 

showcasing unique performance characteristics, setting them apart from one 

another. Over time, the field of electrochemical energy conversion technology has 

undergone significant advancements. The primary focus now revolves around 

addressing the challenges related to effectively integrating these electrochemical 

energy storage systems into emerging application domains of the modern era [56].  

Despite being invented in the 19th century, even before the advent of grid 

electricity, lead-acid batteries are still widely utilized across various applications, 

such as stationary energy storage systems and automotive starter batteries, due to 

their reliability, cost-effectiveness, and well-established manufacturing 

infrastructure. Those earliest batteries were charged by applying a reverse current 

through the battery, a process that involves forcing electrical energy into the battery 

to reverse the chemical reactions that occurred during discharge. This reverse 

current was typically provided by a DC power source, such as a hand-cranked 

generator, dynamo, or another battery. However low energy and power densities 

with lesser cyclic life, the need for better batteries has arisen in the last two decades 

because of the development of various telecommunication, space, military, portable 

electronics, etc. LIB, since its invention in 1980 and commercialization in 1990, 

then we have witnessed large increases in energy & power density and huge 

reductions in the cost of production [57],[58]. These advances have brought EVs to 

the center of plans of vehicle manufacturers and created a boom in LIB 

manufacturing. To further advance these technologies, and properly manage them, 

there is a clear need to develop our quantitative and qualitative understanding of 

LIB. 

In general, a battery is an array of similar cells, either connected in series, parallel, 

or both, and in reality; these modules of cell (or battery) are in true use as in its 

elementary form, because of its low energy and power densities and in reality 

several cells (in series-parallel combination) with a battery management system, 
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connectors, wires and cables, holders, packing, etc. are housed in a casing of 

suitable size, making batteries, as physio -electro- chemical- mechanical device of 

suitable voltage and ampere- hours. The most popular commercially available LIB 

comes in the four foam factors: coil cell, pouch cell, prismatic cell, and cylindrical 

cell [59]. Cell design can be approached in multi-directional ways and can be built 

into different simulation models to accomplish its behavioral theme for chemical, 

electrical, or hybrid points of view with or without temperature or other mechanical 

stresses. Applying a probabilistic data-driven machine learning (ML) approach 

allows for quantification of uncertainty to support decisions in design and control 

more effectively, even though complex behavioral, operational, and environmental 

phenomena limit the value of classical deterministic modelling techniques and are 

a foremost tailback in design iterations.  

1.4  STATUS OF LIB IN E-MOBILITY  

In the year 2023, the landscape of demand within the realm of emerging EV 

technology witnessed a remarkable transformation. Approximately 60% of the 

coveted lithium resources, 30% of the sought-after cobalt reservoirs, and 10% of 

the precious nickel stores were fervently allocated to satiate the insatiable hunger 

for EV batteries. Notably, in the year of 2017, these shares were a mere fraction of 

their present stature, constituting a mere 15%, 10%, and 2%, respectively [60],[61]. 

The appetite for LIBs within the automotive sector surged dramatically in 2023, 

experiencing a remarkable 65% upswing, culminating in a robust demand of 550 

GWh, up from the 330 GWh recorded in the previous year.  



13 
 

   

Fig. 1.9 (a) Global market share of different cell chemistry (b) Global LIBs 

demand growth. 

This formidable expansion can be attributed predominantly to the electric passenger 

car segment, which witnessed a meteoric 55% surge in new registrations throughout 

2022 compared to its 2021 counterpart. Lithium nickel manganese cobalt oxide 

(NMC) has a significant market of 60% in 2023, lithium iron phosphate (LFP) are 

under 30% and nickel cobalt aluminum oxide (NCA) at roughly 8%, as Fig. 1.9 (a) 

illustrates. In their report unveiled by the McKinsey battery insights team, a 

tantalizing projection unfurls as shown below Fig. 1.9 (b), foretells the luminous 

trajectory of the complete LIBs continuum suggests an annual growth rate 

exceeding 30 percent, from the year 2022 through 2030. By that time, it shall have 

a valuation of over $400 billion and a market of 4.7 terawatt-hours [62].  

Future advancement of LIB technology relies heavily on material science 

advancements and the precise control of operational parameters. Understanding the 

multi-level degradation process is crucial for devising strategies to extend battery 

lifespan, enhance performance, and ensure the continued progress of this 

indispensable technology. State of charge and cycle bandwidth, overcharging with 

high voltage and current region, over-discharge and temperature (high and low) 

during storage and operation, internal and external short circuits in the cell, 

overheating on the cell and battery, and accelerated degradation are the main causes 
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of LIB health degradation [63]. To ensure that LIB operates dependably, safely, 

and for a longer period, a battery management system (BMS) is necessary because 

of some inherited properties and limitations. Battery data collecting, battery 

condition prediction and determination, charge and discharge control, safety 

protection, thermal management, balancing, control, and communication are just a 

few of the multiple processing features that an all-inclusive BMS should have [64].  

 

Fig. 1.10  Influence factors responsible for main and side reactions. 

The various influence factors, as seen in Fig. 1.10, are ultimately in charge of 

capacity and power fading. These factors originate at the design stage and continue 

through usage, giving rise to a multitude of primary and secondary reactions within 

the cell. Numerous studies have been conducted in this area of academic interest: 

the physics of reaction modes and consequences, degradation modes, and the 

impacts that follow. The indirect indices, which are various dynamic states of 

charge, power, energy, health, remaining useful life, and  temperature are crucial 

for recognizing and keeping an eye on the battery system, just as the measurable 

indices of LIB are voltage, current, internal resistance, impedance, and temperature 

[65]. State of charge (SOC) and state of health (SOH) are two of the most crucial 
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parameters and accurately determining SOH is needed to continue the service life 

and guaranteeing the secure and dependable operation of the system. When 

comparing a battery's capacity or impedance to its unused state, SOH is a metric 

that assesses the battery's overall health and capacity to meet performance 

requirements. 

 1.5  LIBs DIFFERENT FIGURE OF MERITS 

A figure of merit (FOM) in the context of LIBs is a specific quantitative metric 

used to evaluate the performance or efficiency of the battery in a particular aspect 

and serves as a benchmark to compare different batteries or to assess how well a 

battery meets certain performance criteria. FOMs are routinely established to 

evaluate the specific suitability of materials or devices for a given application [66]. 

These metrics are instrumental in assessing the relative effectiveness and 

practicality of various options within the field of engineering applications [67]. In 

the context of engineering applications, particularly in the domains of e-mobility, 

energy storage systems, backup power, and decentralized systems, LIB is 

extensively employed, and this widespread usage necessitates a tailored set of FOM 

to address the diverse objectives associated with LIB [68],[69]. Collectively, these 

FOM ensure the effectiveness of energy storage systems and provide a 

comprehensive indication of their performance (energy/ power), lifespan, 

reliability, safety aspects, and more [70]. Essentially, these metrics quantify the 

aging and degradation processes in various components such as electrodes 

(anode/cathode), current collectors, separators, and other critical elements of the 

system [71]. The FOM used to characterize the performance of LIB varies on the 

specific application or use case, but some commonly used FOM for LIB include: 

1. Energy density: The FOM measures the volume of energy stored with respect 

to the weight of the battery. Batteries with a higher energy density are preferred 

because they can provide longer run times for portable devices or increase the 

range of e-mobility [72]. 
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2. Power density: The FOM measures the rate at which energy can be delivered 

from the battery. Higher power density batteries are desirable because they can 

provide more power for high-performance applications such as EVs or power 

tools [73]. 

3. Cycle life: The number of charge-discharge cycles the battery can withstand 

before its capacity declines to a predetermined level is measured by the FOM. 

High cycle LIB are desirable because they can last longer and require less 

frequent replacement [74]. 

4. Safety: The FOM measures the risk of the battery causing fires, explosions, or 

other safety hazards. Safer batteries are desirable because they can reduce the 

risk of accidents and increase user confidence [75],[76]. 

5. Cost: The FOM measures the cost of the battery per unit of energy or power. 

Lower-cost batteries are desirable because they can make energy storage 

inexpensive and welcoming to large applications [17]. 

6. Weight: Weight can be used as an FOM for LIBs, specifically through the 

specific energy or specific power metrics [77]. 

7. Thermal stability: Thermal stability is an important FOM for LIB because it can 

affect the safety, performance, and lifetime of the battery. When a LIB 

experiences thermal runaway, it can lead to fires or explosions, which can be 

dangerous and can cause property damage. Therefore, LIBs with high thermal 

stability are desirable because they can reduce the risk of thermal runaway and 

improve overall safety [78],[79]. 

8. Lifespan: lifespan is another commonly used FOM as it implies to length of 

time that the LIB be used before it dies [80]. 

The establishment and evaluation of these FOMs are pivotal in guiding the 

development and optimization of energy storage technologies for diverse 

applications as shown in Fig. 1.11. State is a type of information that is linked to 

the item it characterizes and the time context in which both the information and the 

object are defined [81]. State is defined as information about a thing at a certain 
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moment inside of a context. The complex electrochemical behavior in any specific 

LIB occurs singularly as well as simultaneously. The pattern of degradation, which 

is invariably nonlinear, is chemistry as well as foam factor specific, which results 

in typical behavior & recommendation to a particular application by a particular 

cell chemistry [82]. 

 

Fig. 1.11  Relationship between different models and different states of LIB.  

1.6  RESEARCH OBJECTIVES 

Performance assessment, state estimation, and correlating its findings with LIB in 

multi-scale levels of capacity deterioration on health and charge level is an 

intriguing research subject with practical implications in diagnostics and 

prognostics. At the same time, it has a complex web of implications on life, 

reliability, and safety aspects. The LIB is highly nonlinear, and it is problematic to 

precisely model, the inner states of LIB cannot be directly measured by physical 

sensors, and the states are easily influenced by the operational and external 

environment, the efficiency of the battery pack is impacted by the cell irregularities, 

which raises in the battery pack. Several methods from different approaches, 

objectives, datasets, and cell chemistries are proposed, which added confusion in 
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its universality in applications. From the point of data bias, interpretability, and 

scalability the suitability of a particular model is highly uncertain, and state 

monitoring point of view, advanced methods need to be applicable from size, cost, 

ease of implementation ability, and durability. 

The focus and overall objectives are to achieve a novel, accurately developed, lower 

complexities, lower cost or less error and tested through experimentation of cell 

performance and state estimation models leading towards performance assessment 

for multiple applications in energy management strategies, battery sizing, and state 

prediction for e-mobility based LIB in real life application is based on using full 

charge and discharge capacity.  

1. Development of a model-based strategy for accurate different state 

estimation in lithium-ion batteries for e-mobility applications. 

2. Comprehensive evaluation and analysis of lithium-ion batteries state 

estimation methods under various operating and environmental conditions for 

assessment of state of health and state of charge. 

3. Development, analysis, and experimental validation of novel computational 

models for state estimation under different operating and environmental conditions. 

1.7  CHAPTER SUMMARY 

This chapter offers a comprehensive overview of the current global energy 

landscape, underscoring the formidable challenges arising from escalating energy 

demand, dependence on finite natural resources, and the escalating environmental 

repercussions, particularly concerning climate change. It introduces the Paris 

Climate Agreement as a concerted initiative to confront greenhouse gas emissions, 

spotlighting the pivotal role of the transportation sector particularly e-mobility in 

combating climate change. Emphasizing the necessity of electrochemical energy 

storage systems, specifically LIB, in the transition to e-mobility, this chapter 

explores the advancements and challenges within LIB technology. Key factors such 

as energy & power density, cycle index, safety, cost, weight, thermal stability, and 
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lifespan are discussed as essential FOM. This chapter delves into the intricate 

dynamics of battery degradation, highlighting the imperative for cutting-edge 

monitoring and estimation techniques. Key focal points include the exponential 

surge in e-mobility adoption, the dominance of LIB in steering this transition, the 

hurdles in addressing climate change, and the pivotal role of evolving LIB 

technology. 

This thesis is composed of six chapters. The overview of each chapter is briefly 

described below, 

• Chapter 1 “introduction” is overview of the subject research, which emphasis how 

energy storage is essential in modern day. This chapter also provides information 

on various electrochemical energy storage systems. Finally, this chapter outlines 

the status of LIB in e-mobility and discusses the function of different figures of 

merits.  

• Chapter 2 "literature survey" contains an extensive review of related literatures on 

various aspects of capacity degradation factors of battery in e-mobility, as well as 

different states analysis, the scope of the research, research gap, problem definition, 

the research objectives. This chapter gives details of research that was conducted 

on various performance aspects of LIBs. 

• Chapter 3 “fundamentals of lithium-ion batteries” details about the fundamental, 

working principles, types of lithium-ion batteries and their comparison on different 

aspects. Different degradation mechanisms, different states and their modeling 

aspects of LIBs are outlined in this chapter.  

• Chapter 4 “methodology and experimental setup” represents the first step in the 

development of methodology and experiments related to different states, 

experimental setups, and cell selection protocols. The chapter also includes 

capacity measurement, assembly of battery packs, BMS, and cell selection. 

• Chapter 5 “results and discussions” outlines the results and discussion of 

experiments carried out during the experimentation related to cell and battery 
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performance under various stresses of various temperature and at different 

discharging current. Results are graphically analyzed.  

• Chapter 6 “conclusions and future scope” presents the conclusion of the whole 

research and future work are discussed. 
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CHAPTER 2  LITERATURE SURVEY 

2.1  CHAPTER OVERVIEW 

This chapter overview outlines the structure of a document or report focusing on 

lithium-ion batteries and related research work. The background section provides 

introductory information about the topic being discussed, which could include an 

overview of battery technology, its importance, and any relevant background 

information. The Capacity degradation section explores the various factors that 

contribute to the degradation of the capacity of LIB over time, such as cycling, 

temperature, overcharging, and other environmental or operational conditions. The 

different modeling approach section discusses different methodologies or 

techniques used for modeling and simulating LIB for electric vehicle applications. 

Different states in the LIB section elaborate on the different states or conditions 

that LIBs can exhibit, including parameters like SOC, SOH, SOF, SOP, SOB, SOE, 

SOT, and RUL. The gaps identified section covers different areas where further 

research is needed or where existing research may be lacking, providing direction 

for future studies. Finally, the chapter summary section provides a concise 

summary of the key points discussed in the chapter, highlighting the main findings 

and conclusions. 

2.2  BACKGROUND 

Over the last thirty years, significant strides in LIB have yielded materials capable 

of reversibly storing lithium-ion, encompassing anodes, cathodes, separators, 

electrolytes, current collectors, and mechanical casings. Despite claims of enhanced 

performance, increased lifespan, reliability, and safety, only a select few 

innovations have found commercial use. The primary hindrance is the absence of 

long-term indices like SOC and SOH, derived from direct performance indices 
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voltage, current, temperature, and resistance [83]. Traditional testing methods and 

field trials, crucial for validation, are hindered by their time-consuming nature and 

the susceptibility of LIB to operational and environmental variations. Throughout 

their lifespan, LIBs exhibit capacity and power fade trajectories, including super-

linear fades termed knee points, rollover failures, or sudden deaths [84]. Applying 

machine learning to LIB is challenging due to its intricate nature and involvement 

of variables like performance, lifespan, safety, cost, and environmental impact. The 

entire battery circular economy, from mining to recycling, adds further complexity. 

Current research relies heavily on a material-centric trial-and-error approach, 

involving synthesis, manufacturing, assembly, and performance evaluation. 

Initiating a literature survey entails thoroughly investigating the existing body of 

knowledge regarding the state estimation of LIB [85]. This exploration aims to 

uncover the diverse methodologies, recent advancements, and existing challenges 

that shape the field of predicting and managing the operational state of these vital 

energy storage devices.  

The process adopted for the literature survey is outlined and shown in Fig. 2.1. The 

selection of "n" in the bibliographic study is aligned with the study's scope to ensure 

comprehensive coverage to achieve literature saturation, prioritize quality over 

quantity, relevant sources that align with research objectives. From the five-year 

bibliographic study, only high impact factored peer previewed original research 

journals with high cited articles in the research field with the goal on SOC and SOH 

estimation through ML are considered for selection of “n”.  
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Fig. 2.1  Process of literature survey.  

A bibliographic study on annual publications on keywords such as “state of 

charge”, “state of health”, “SOC”, “SOH”, “ML”, “supervised learning” and 

“machine learning”, in Google Scholar from 2018 till 2024 has been carried out 

and the outcome is as in Fig. 2.2. which displays the novelty of the subject and 

possibilities of future work in this direction. 

 

Fig. 2.2  Annual bibliographic analysis of available literature 2018- 2023.  

The origins of state estimation can be arguably linked to the efforts of astronomers 

in the early nineteenth century, when in 1801, Gauss developed what might be 

considered the inaugural state estimation algorithm by employing Kepler's laws and 
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ordinary least squares exclusively, successfully calculated the orbit of the asteroid 

Ceres with precision, despite having to work with limited and noisy observations 

[86]. The earliest evidence of state estimation of any electrochemical devices used 

in e-mobility is in 1939 [87]. The pace for state estimation gathered after the 

invention and commercialization of LIB in 1990 because of dynamic and patio–

temporal behavior with several publications on methods and methodologies 

researched. Over the past three decades, there has been extensive research and 

development on LIB, resulting in numerous materials capable of storing lithium 

ions reversibly, as either an anode or cathode [88]. Various components such as 

separators, electrolytes, current collectors, mechanical casings, and others have also 

been developed with claims of improved performance, life, reliability, safety, and 

other parameters [89]. However, despite these developments, only a few have found 

commercial use due to the non-availability of long-term indirect indices like SOC, 

SOH, etc. from direct performance indices like voltage, current, temperature, and 

internal resistance (IR) over time [90]. 

A typical electrochemical cell only stores (charges) energy and releases 

(discharges) it on demand and in a controlled manner. This stored energy is 

determined by the intrinsic properties of individual electrode materials and design 

characteristics. The energy content of any battery is divided into three sections 

namely, available energy that can instantly be retrieved, zone that can be refilled, 

unusable part, or rock content that becomes inactive as part of capacity degradation. 

In general, all cells fade over time due to some ratio of irreversible chemical 

reaction on storage (calendar aging) or during operation (degradation), but this fade 

is not linear [91]. LIBs also follow somehow similar trends but have distinct 

characteristics and fading parameters because of their electrochemistry, operating 

conditions, and application. The key stumbling block for the advancement of LIB 

is the unpredictability of fade and thus accurate prediction of battery states is 

needed to know its exact status and whether a battery is suitable to a particular 

application, should be replaced, and avoid unexpected life fade. 
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LIB capacity and power fading are cumulative effects of degradation on active 

components like electrodes (anode and cathode), electrolytes, or passive 

components like separators, current collectors, etc. Aging in LIB is a linear process 

of becoming older as a decline or loss of capacity and other vital characteristics 

with increasing age is caused by a time-progressive decline, called calendar fade. 

Rates of aging are non-controllable and are mostly a function of cycle count 

(already used status) and age, apart from storage SOC, storage temperature, etc. 

Degradation in LIB is the non-linear process of becoming older as a decline or loss 

of capacity and other vital characteristics with chemical and mechanical 

degradation caused by different operational and environmental conditions, 

maintenance, upkeeping, etc. This has to do with the various forms of mechanical, 

thermal, and electrochemical deterioration that cells encounter in application 

settings [92]. The magnitude of degradation is affected by operating and 

environmental elements include charge/discharge rates, electrochemical working 

windows, and temperatures. The degradation mechanism triggers anode and 

cathode degradation, inactive material degradation, and higher-order degradation. 

Aging and degradation occur simultaneously in any electrochemical cell or battery 

including LIB.  

Unlike stationary applications, LIBs used in e-mobility behave differently as the 

industry progressively moves towards electrification. LIBs are an important 

component in an EV and thereby require accurate real-time supervising, 

monitoring, prognostics, and diagnostics to keep updated. Weather and climatic 

conditions like temperature, etc. are vital and play a significant role in its 

performance, life, and reliability. On vehicles, energy and power needs are directly 

related to the propulsive force FPropulsion, which itself depends upon several factors 

as represented through equation 1 and propulsive power PProp through equation 2. 

The equation calculates the power required for propulsion, where PProp represents 

the propulsion power, μ is the coefficient of rolling resistance, and v is the velocity 

of the vehicle.  
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FPropulsion = Frolling resistance + FAerodynamic drag + FRoad slop + FAcceleration  (1) 

PProp = μvFPropulsion        (2) 

Total auxiliary power consumption, where 𝑃Aux is the total auxiliary power. PBase 

represents the base power consumption that includes the power required for 

essential functions of the system and 𝑃Climate represents the additional power 

consumption related to control systems and is represented through equation 3. The 

total power consumption is represented through equation 4 and the variability in 

total power is dependent on PProp and PClimate.    

PAux = PBase + PClimate        (3) 

PTotal= PProp + PAux        (4) 

LIB concerns about performance, safety, and trust ability remain major hindrances, 

which necessities be addressed to improve recognition of energy storage chemistry 

[49]. The nonlinearity and, complexity in the degradation of LIB over time scale 

lie at the center of this challenge [93]. Time duration of charge/ discharge, 

operational, and environmental conditions lead towards performance deterioration 

at the cell level leading to battery pack failures, which, in certain cases, can be 

catastrophic due to fires, because of thermal runaway.  

 

Fig. 2.3 lithium-ion battery failure mechanism. 
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There are four main ways to approach the process of diagnosing and detecting 

capacity and power degradation: boundary and movement checking on inputs and 

outputs is used by temporal redundancy, which use expert and knowledge-based 

techniques. This strategy is arguably the most popular in business today. Hardware 

redundancy that detects trends in capacity decline using majority vote governing 

logic [94]. Despite being widely used in mission-critical and safety systems, this 

scheme's high cost prevents it from being used in many other applications. 

Analytical redundancy is a model-based technique that creates software quantities 

known as residuals by utilizing data and the system's model. The residuals are 

treated for detection, isolation, estimate, and accommodation; they are sensitive to 

the degradation pattern. Combining many algorithms from the same or different 

classes results in algorithmic or hybrid redundancy [95], [96]. Cell level failures 

are either chemical level, electrical level, mechanical level, or thermal level failure, 

which solemnly occurs singularly, but in actual operation, it is always a 

combination of multiple factors. Understanding the interplay between this failure 

mechanism is crucial for designing robust and resilient systems and is outlined in 

Fig. 2.3. 

Multiple types of faults occur inside a LIB which are classified as shown in Fig. 2.4 

which leads towards ultimate failure as well as creating safety hazards. This 

happens alongside aging and degradation in a cell.  Understanding of capacity and 

power degradation and failure is still very limited and more limited yet dependable 

and real-world models & techniques for prediction of these diverse facts. Capacity 

degradation and its accurate estimation & reliable fault diagnosis technique are 

decisive in the assurance of safety, stability, and reliable operation of LIB-based e-

mobility batteries. 
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Fig. 2.4  Types of faults and their effect in LIB. 

While material science takes care of enhancing energy and power densities, safety 

concerns, increasing life, reliability, safety concerns, and multi-disciplinary 

approach [97] towards decoding cells from different approaches, monitoring, 

estimation of various dynamic states- charge, health, function, etc. are employed 

for higher deployability, understanding remaining useful life, end of life prediction, 

and warranty prediction [98],[99]. A drawback of LIBs is that for appropriate, safe, 

and durable applications with optimum life, they demand persistent investigation 

to operate in a constricted band of voltage, temperature, and other mechanical 

conditions [100],[101]. The ability of LIBs to alter their mechanical values while 

operating is another crucial feature and it operates on a rocking chair mechanism, 

as proposed by Armand in the 1970 [102]. The active materials in LIB expand and 

contract throughout various operations, along with a portion of non-reversible 

physical changes that partially represent the SOH [80]. Mechanical instabilities 

such as plastic bend, destruction, fragmentation, and shattering are caused by this 

strain. These effects are closely related to the SOH or RUL since they are 

recognized as a primary cause of performance fading during the course of the cycle 

[103]. 
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LIBs, as an electrochemical entity with multifaceted planetary of constituents 

(electrodes, electrolytes, binders, and separators) at the cell level and different 

electrical, mechanical, and electronic components at the battery pack level with 

large design space subjected to wide variation in operational & environmental 

conditions [104],[105]. Cell design parameters can be approached in 

multidirectional ways and can be built into different simulation models to 

accomplish and analyze its behavioral theme for chemical, electrical, or hybrid 

points of view with or without temperature or other mechanical stresses [106]. 

While complex behavioral, operational & environmental phenomenon restricts the 

value of classical deterministic modeling techniques [107],[108]. This poses a 

significant challenge for further design iterations, to shorten test durations and test 

numbers while maintaining accuracy, future state prediction is required. Applying 

a probabilistic data-driven machine learning approach which enables the 

quantification of uncertainty to inform design and control decisions more 

effectively. LIBs, when stored or charge-discharged, exhibit a two-phase 

degradation behavior characterized by first, a linear phase and second a nonlinear 

phase where degradation is comparatively rapid [109]. The multitude of 

degradation phenomena occurring in LIB complicates the understanding of the two-

phase degradation pattern. 

2.3  CAPACITY DEGRADATION FACTORS 

LIB’s capacity degradation is dominated by different mechanisms during each 

phase in its lifetime. LIB in operation are characterized by two phenomena: 

thermodynamics (equilibrium) and kinetics (non-equilibrium) [110]. The primary 

cause of capacity degradation is exothermic chemical processes, which also result 

in the loss of active material. The ineffective byproducts that are produced obstruct 

the current migration pathways, raise internal resistance, and reduce power 

capabilities. Numerous factors influence the degradation, both at the level of 

individual cells and the battery, and their effects are frequently connected [111].  
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Although the factors that cause degradation at the single cell level are both 

thermodynamic and kinetic, the environment (such as temperature, pressure, or 

mechanical effect) and the duty cycle (such as voltage and current intensity) have 

an effect on properties of the cell, and batteries deteriorate even in storage situations 

[112]. The degradation can be coarsely estimated through increasing internal 

resistance and gradual capacity loss resulting in a drop in the amount of power 

provided. These factors collectively contribute to active and inactive material 

degradation. The primary contributors to degradation include excessive charging in 

both high current and high voltage conditions, frequent over-discharging and 

cycling, temperature extremes during storage and operation (both low and high), 

SOC and cycle bandwidth, internal short circuits within cells, external short circuits 

in batteries, cell and battery overheating, accelerated degradation, and thermal 

runaway. 

2.4  DIFFERENT MODELING APPROACH  

Different modeling approaches follow different methodologies that are used to 

create mathematical or computational models for studying and simulating systems, 

processes, or phenomena [113]. The analytical modeling approach involves 

deriving mathematical equations that describe the behavior of a system based on 

fundamental principles and assumptions. Analytical models often provide insights 

into system behavior but may be limited to simple or idealized scenarios due to the 

need for mathematical tractability [114]. Empirical modeling relies on data and 

observations to develop relationships or patterns that describe the behavior of a 

system. Statistical techniques, regression analysis, and machine learning algorithms 

are commonly used to create empirical models [115]. These models may lack 

physical interpretability but can capture complex behaviors and patterns from real-

world data. Numerical modeling involves solving mathematical equations or 

simulations using computational techniques [116]. Finite element analysis and 

computational dynamics used in numerical modeling techniques. Numerical 
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models can provide detailed insights into complex systems but require 

computational resources and involve simplifying assumptions. 

Agent-based modeling approaches are represented as collections of autonomous 

agents that interact with each other and their environment according to predefined 

rules. Especially helpful for analyzing complex systems with emergent behaviors 

are agent-based models, such as social systems, ecological systems, and traffic 

flow. Systems dynamics modeling focuses on understanding the behavior of 

complex systems over time by representing feedback loops, delays, and nonlinear 

relationships [117]. These models are often used to simulate dynamic systems such 

as supply chains, economic systems, and environmental systems. Hybrid modeling 

combines multiple modeling approaches to capture different aspects of a system 

[118]. A hybrid model may integrate analytical, empirical, and numerical 

components to simulate a system's behavior more accurately. Each modeling 

approach has its own merits and flaws with selection of approach lies on the specific 

characteristics of the system being studied, the available data and resources, and 

the research objectives. Fig. 2.5 illustrates different modeling approaches used for 

state evaluation in LIB. 

 

Fig. 2.5  Different state estimation approaches are used in the lithium-ion 

battery.  
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2.5  DIFFERENT STATES IN LIB 

The state parameters are crucial for monitoring and managing the performance, 

safety, and reliability of LIB in different applications, including EVs, movable 

devices, energy storage systems, and grid stabilization. Effective battery 

management systems utilize measurements and algorithms related to SOC, SOH, 

SOS, RUL, SOP, and SOF to optimize battery operation, extend service life, and 

ensure safe and reliable performance. The state of charge in LIB signifies the 

presently available capacity concerning its present maximum available capacity. 

This relative value, which varies between 0 or 0% (fully discharged) to 1 or 100% 

(fully charged) is influenced by the LIB's electrochemistry, operational conditions, 

and SOH affected by environmental factors [119]. Thus, the relationship between 

SOCmin, SOCmax, and SOCt must satisfy equation 5. Precise determination of SOC 

with other indirectly derived indices like SOH, etc. is essential for extending cell 

lifespan and guaranteeing secure operation [120],[121]. 

SOCmin ≤ SOCt ≤ SOCmax       (5) 

Among several FOMs that define LIB inherited characteristics that determine 

performance, safety, and economic viability, SOC is a crucial factor, and it 

indicates the capacity of the LIB, and it is frequently utilized to optimize the 

regulation of charging and discharging processes. Hence, an accurate SOC 

estimation method is of utmost importance to manage more efficiently [122]. 

Numerous reasons that affect the accuracy of SOC include temperature, age, 

discharge rate, battery history, cell chemistry, and  measurement method [123]. 

Categorized into several SOC estimation methods are generally defined as the ratio 

of the remaining charge in a battery to its maximum capacity, expressed as a 

percentage. Nonetheless, accurate SOC evaluation of LIBs is still difficult because 

of their variable properties in various operating conditions and is commonly 

estimated using three distinct approaches, non-model based [124],[125], model 

based [126],[127] and fusion-based [128],[129].  
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Fig. 2.6  Different types of SOC estimation methods. 

The filter algorithm, nonlinear observer, hybrid algorithm, and conventional 

method are the five classes into which SOC estimation methodologies can be 

divided [130]. The frequently used approaches for SOC prediction are direct 

measurement with  model-based and data-driven approaches or in combination of 

two or more of these methods [131], [132]. Open-circuit voltage (OCV) and 

coulomb counting (CC) are examples of direct measurement-based techniques. To 

simulate SOC, the model-based approach makes use of in-depth knowledge of the 

electrochemistry domain, including internal electrochemical reactions, the 

electrical properties of the components employed in the model, and intricate 

mathematical equations. The Luenberger observer, Kalman filters, sliding mode 

observer, electrochemical model, equivalent circuit model, and electrochemical 

impedance model [133],[134], which is illustrated in Fig. 2.6 are notable examples 

of model-based approaches. 

SOH is commonly defined as the current state of the battery as compared to its ideal 

state and its fresh state. Its estimation techniques are applied to various indirect 

health indicators (iHI) and can be broadly classified into four categories: model-

based, data-driven, hybrid, and differential analysis methods, each of which is 

further subdivided. The mathematical description of SOH is in terms of LIB 
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capacity decrease or impedance increase over the time horizon. State of health 

based on the ratio of the actual capacity of the aged LIB 𝑄aged to its rated capacity 

𝑄rated and represented through equation 6 and SOH based on the impedance of the 

battery represented through equation 7.  

SOH = 
𝑄𝑎𝑔𝑒𝑑

𝑄𝑟𝑎𝑡𝑒𝑑
x 100%        (6) 

SOH = 
𝑅𝑒𝑜𝑙−𝑅

𝑅𝑒𝑜𝑙− 𝑅𝑛𝑒𝑤
x 100%       (7) 

Except for ML-based approaches, all others are effective in accurately modeling 

the behavior of LIBs; however, they are not suitable for online operations and are 

difficult to design due to both practical and theoretical concerns. Practically, these 

methods require extensive research, experimentation, and time to develop an 

accurate SOH estimation model [84],[135]. Theoretically, they rely on complex 

mathematical equations based on thorough understanding of cell chemistry, 

physics, and chemical properties, leading to challenges in battery model 

development and parameter estimation.  

On the other hand, SOH can be estimated using data and strong processors in ML-

based SOH estimation algorithms with little to no prior knowledge of internal 

properties and chemical interactions. However, the caliber and volume of the 

accessible data have a significant impact on the performance and accuracy of ML 

techniques. Since SOH is essentially regarded as a multi-physics and multiscale 

system due to the complicated interplay between various physical processes at 

various length scales, imbalanced data may result in issues with overfitting or 

underfitting. A persistent scientific issue is to predict this behavior of multi-physics 

and multiscale systems through modelling and forecasting [136]. The processes that 

take place in the LIBs on a physical, chemical, and electrochemical level are 

intricately linked and can span many spatiotemporal scales [137]. Lithium ions 

travel through an intricate web of components, including the electrode, electrolyte, 

and separator, at the molecular level. Numerous physical and chemical processes, 
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such as diffusion, intercalation, and phase changes, control its movement [138]. At 

the same time, the overall behavior of the battery is affected by a variety of external 

factors, such as environmental and operational [139],[140]. These external factors 

can influence the internal processes of the battery and can lead to complex feedback 

loops that can affect the LIB working, safety, and cycle index [141],[142]. Given 

the complexity of LIBs, it is important to have a detailed understanding of the 

underlying physics and chemistry to optimize their design and operation. This 

requires a multidisciplinary approach that combines expertise in materials science, 

electrochemistry, and systems engineering [143].  

Electrochemical reactions and failure mechanisms are not taken into account by 

data-driven techniques and work on two main steps: first, identify one or more 

elements from the measured battery data (such as temperature, voltage, and 

current, which are generally called direct health indicators) or iHI that can 

characterize the degradation [144], which are then used to establish a relationship 

between these health indicators to SOH, using different machine learning methods 

[145].  Feature extraction plays a significant role and is a critical step and the iHI 

will significantly affect the performance of SOH estimation [146],[147]. Several 

researchers have developed different iHI at the cell level and employed different 

SOH estimation methodologies like [148] estimated charge storage for the kth 

cycle and internal resistance and number of cycles and used particle filter 

algorithm [149],[150]. The investigation of SOH [151] using ohmic internal 

resistance and polarized internal resistance employed ELM-based FF-NN. LSTM-

based NN has been used by [152] and initial discharge voltage drop and time 

interval to equal discharging voltage difference have been employed as iHIs. 

Investigated SOH [153] employing ELM and RVFL network and employed 

duration of an equal charging voltage difference as iHIs.  

The battery's unique capacity for continuous or instantaneous power output 

throughout time is known as the state of function, or SOF. It shows how the 

battery performs in relation to the actual load needs and can be expressed as 
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battery peak output power, which is constrained by SOC, voltage, and current 

constraints, among other criteria. SOF reflects the deterioration in performance 

(power fading) and calculation involves parameters such as SOC, voltage, current, 

and temperature [154]. As batteries age and environmental conditions change, the 

safe operating area undergoes alterations, leading to a decline in battery 

performance. The estimation of SOF relies on the simultaneous assessment of 

SOC and SOH, derived from SOP. 

The available power that a battery can supply to or absorb over a time horizon is 

known as the state of power (SOP), which is determined by the product of the 

corresponding voltage and the threshold current. Various operational constraints 

must be explicitly considered and adhered to. It has significant importance in the 

context of dynamic driving scenarios for e-mobility, such as ascending ramps, 

accelerating, overtaking, cruising, and sudden braking [134],[155]. This 

information about dynamic driving conditions is relayed to the vehicle control 

unit to regulate the power distribution from the battery. Within battery energy 

management, SOC and SOP are identified as pivotal factors and SOP specifically 

represents the accessible power that the battery can either absorb from or deliver 

to the electric vehicle's powertrain [156], [157].  

The remaining energy in the battery, crucial for predicting the driving mileage in 

e-mobility through the BMS, is determined by state of energy (SOE). As the 

battery discharges, the voltage declines, while during charging, voltage increases 

at distinct SOC levels, leading to corresponding variations in energy levels. High 

discharge rates result in significant internal energy losses with minimal capacity 

changes. Notably, SOC signifies residual battery capacity in ampere-hours (Ah) 

rather than the available energy in watt-hours (Wh). In [158] it delves into the 

disparity between SOC and SOE, emphasizing it as a parameter for SOH 

estimation. The widening of this difference is linked to decreasing temperature 

and increasing aging. The mathematical expression for SOE is presented with 

equation 8 where SOEin is the initial SOE of the battery, Erated is the rated energy 
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of the battery, and P(τ) is battery power at time interval τ. 

SOEt= = SOEin + 
1

𝐸𝑟𝑎𝑡𝑒𝑑
 ∫ P(τ) 

𝑡

0
dτ      (8) 

The temperature distribution, which results from heat production and degeneracy 

inside a battery cell or battery pack during regular operations, is the 

macroscopically manifested thermal dynamics of a battery and is known as the state 

of temperature (SOT). The surface, average, and core temperatures of a battery are 

frequently indicative of SOT for control and convenience of use. LIB exhibits 

dynamic and non-linear behavior, being particularly sensitive to fluctuations in 

temperature. Their widespread use in both stationary and portable applications is 

attributed to their compact size and high energy density [159]. However, the 

thermal management of high energy density LIBs poses challenges during charging 

and discharging processes. Elevated battery temperatures can lead to capacity 

degradation and increased resistance. Thermal runaway, resulting from thermal, 

mechanical, and electrical stresses, is a critical concern. Understanding the changes 

in battery characteristics during thermal impact is crucial and implementing safety 

techniques becomes essential to minimize stress factors in the battery. The research 

focused on the heat distribution and flow within the battery emphasizes the 

significance of SOT. Achieving an exact thermal model and precise limits is 

essential for obtaining a thorough understanding of the battery thermal dynamic 

characteristics [160].  

Remaining useful life (RUL) of LIB represents the remaining life of the battery 

before it degrades to a point where it becomes unusable. Predicting RUL is crucial 

to prevent unexpected battery failure or complete shutdown in a controlled manner, 

facilitating proper maintenance. Despite the vital role RUL prediction plays in 

battery technology, literature is scarce on this subject, as noted in [161]. The 

prediction of RUL not only contributes to extending battery life but also assists in 

assessing the current health status of the battery based on historical data, thereby 

enabling the detection of potential failure risks. In [103], a diagnostic model is 
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developed to identify health indicators for online SOH estimation. It addresses 

[150] various issues related to the safety and reliability of batteries, emphasizing 

that battery malfunctions can lead to fire explosions and an increased risk of system 

failure. Historical incidents, such as the 1999 US Space Research Laboratory failure 

due to nonstandard internal impedance and the 2013 Boeing 787 fire caused by 

abnormal battery behavior, underscore the critical importance of battery health. The 

continuous overcharging of the battery led to the failure of NASA's MARS probe, 

emphasizing the need for effective RUL management and it extends the application 

of RUL to electronic devices for predictive maintenance [162]. The paper 

introduces a RUL model developed using the Unscented Kalman Filter and 

Bayesian Progression neural network, showcasing the diverse approaches 

employed in RUL prediction across different technological domains. 

2.6  GAPS IDENTIFIED 

While there has been considerable research on SOC estimation in LIB using 

different ML techniques [70],[154] there are still some research gaps that need to 

be addressed in physics-inspired SOC estimation using supervised learning [163]. 

Some of these research gaps include:   

1. LiFePO4 batteries often encounter difficulties in accurately estimating their 

SOC because of the plateaus that exist in the mid-range of the OCV- SOC curve, 

which is not in existence in other LIBs. Traditional SOC estimation techniques 

are generally inadequate in accurately determining the SOC in this range [164].  

2. Most of the research was centered around the experimental analysis of cells, 

whereas cells are seldom used in any application, the truth is in real life, only 

battery packs of different configurations are used, which consist of series-

parallel configured cells, battery management system, electrical & mechanical 

balance of system, etc. 

3. Limited research on the use of physics-inspired features: While the use of 

physics-inspired features has shown promise in improving SOC estimation 
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accuracy, there is still limited research on the selection and optimization of 

these features for different supervised learning algorithms [160]. Further 

research is needed to investigate the optimal set of physics-inspired features and 

their impact on SOC estimation accuracy [165],[166]. 

4. Lack of research on the impact of experimental conditions: SOC estimation 

accuracy can be affected by various experimental conditions, such as 

temperature, cycling rate, and aging [167],[168]. However, there is limited 

research on the impact of these conditions on the performance of different 

supervised learning algorithms in physics-inspired SOC estimation[169],[170]. 

Further research is needed to investigate the robustness of different supervised 

learning algorithms under different experimental conditions. 

5. Limited research on the use of multi-scale modeling: SOC estimation in LIBs 

involves modeling at multiple scales [171],[172] including cell-level and 

battery-level modeling [173]. However, there is limited research on the use of 

multi-scale modeling in physics-inspired SOC estimation using supervised 

learning algorithms [174],[175]. Further research is needed to investigate the 

potential benefits of using multi-scale modeling in physics-inspired SOC 

estimation [176]. 

6. Lack of comparative studies: There is a lack of comparative studies that 

evaluate the performance of different supervised learning algorithms for 

physics-inspired SOC estimation in LIB [177]. Further research is needed to 

conduct comparative studies to evaluate the strengths and weaknesses of 

different supervised learning algorithms for SOC estimation in LIB [178],[179]. 

2.7  CHAPTER SUMMARY 

This chapter explores the evolutionary trajectory of state estimation of LIB, giving 

insights into the formidable challenges and influential elements that contribute to 

capacity degradation, with a specific emphasis on SOC, RUL, SOT, SOP, SOE, 

SOF, and SOH, which encompasses a spectrum of degradation mechanisms. It 

underscores the paramount importance of precisely predicting battery states, 
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particularly in the dynamic and spatiotemporal context of LIB powering e-mobility. 

The intricate nature of LIB degradation, dissecting factors such as aging, impedance 

fluctuations, and electrode slippage, and exploration extended to the nonlinear 

facets of degradation, encapsulating both calendar aging and degradation during 

operational phases are the main purpose of this chapter. Furthermore, this chapter 

investigates the hurdles faced in the electrification of vehicles, where LIB serves as 

linchpins, necessitating real-time monitoring and diagnostics. Environmental 

factors, particularly temperature, emerge as pivotal influencers on LIB 

performance, lifespan, and reliability.  

The concept of capacity degradation factors takes center stage, accentuating the 

prevalence of distinct mechanisms throughout various stages of a battery's lifespan. 

Emphasis is placed on comprehending and predicting SOC and SOH to ensure the 

safety, stability, and dependable operation of LIB. This chapter identifies 

limitations in current research, highlighting gaps in SOC estimation through 

supervised learning. A need for further exploration into multi-scale modeling, 

physics-inspired features, and the impact of experimental conditions on the 

accuracy of state estimation. Additionally, there is a call for comparative studies 

evaluating different supervised learning algorithms for SOC estimation in LIB. At 

the core, this chapter carries a thorough panorama of the obstacles, mechanisms, 

and factors influencing the state estimation and degradation of LIBs, with a specific 

focus on SOC and SOH. It underscores the indispensable role of precise prediction 

in ensuring the secure and efficient functioning of LIB across e-mobility. 
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CHAPTER 3    

FUNDAMENTALS OF LITHIUM-ION BATTERIES 

3.1  CHAPTER OVERVIEW 

This chapter provides a thorough overview of lithium-ion batteries and their 

research advancements, focusing on fundamental principles. The introduction 

section begins with detailing the evolution from lithium metal to different LIB 

classifications, discussing on cell-level working principles and highlighting 

research progress. Furthermore, it presents an overview of the current state of 

research, encompassing advancements in LIB technology, modeling 

methodologies, and characterization techniques. The effects of capacity 

degradation mechanisms on battery performance, such as electrode material 

degradation and electrolyte decomposition, are covered in considerable detail. The 

chapter also explores diverse modeling techniques for LIB, crucial for 

understanding dynamics and optimizing performance. The chapter culminates with 

a succinct summary encapsulating the key insights and conclusions drawn from the 

preceding discussions and serves as a consolidation of the main findings, 

highlighting the significance of the concepts in advancing LIB technology. 

3.2  INTRODUCTION 

Lithium also known as "lithion" or "lithina," was initially identified in 1817 by 

Arfwedson and Berzelius during their analysis of petalite ore (LiAlSi4O10) [180]. 

Lithium has a lot of potential as a battery anode because of its exceptional physical 

properties, which include its low density, high specific capacity, and low redox 

potential [181]. Since the late 1960, non-aqueous 3V LIB primary batteries have 

been available in the market with simultaneous research on advances to create 

rechargeable (secondary) LIB, when in the early 1970s, a resurgence of interest in 
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intercalation reactions, where ions, atoms, or molecules are inserted into a 

crystalline lattice of a host material without disrupting its structure. Adhering to the 

aforementioned criteria, groundbreaking research on intercalation was initiated by 

multiple teams in 1972, employing Prussian-blue materials like iron cyanide 

bronzes M0.5Fe(CN)3 [132]. During the same time, at a NATO conference, it was 

suggested to use transition metal disulfides as intercalation electrode materials for 

energy storage devices [182], [183]. A decade later, Li//TiS2 cells were 

commercialized in various sizes by different companies [184]. Another successful 

metal disulfide was MoS2, with MOLICEL batteries manufactured by Moli Energy. 

Among the various metal chalcogenides studied at that time, only NbSe3 emerged 

as a commercialized cathode material by AT&T in 1989.  

Additionally, V2O5 was used as a cathode material in commercialized LIB in the 

1990s. In 1979 [185] replaced sodium with lithium ion NaxCoO2, patenting LiCoO2 

as a new cathode material with improved stability and excellent electrochemical 

properties. This marked the beginning of research into solid-solution materials, 

particularly Li(NixMnyCoz)O2 (NMC) in the 1990s. In 1984, conducted early work 

on spinel LiMn2O4, which offered cost advantages and better thermal stability than 

LiCoO2. The issue of manganese dissolution into electrolytes at high temperatures 

was later addressed using an effective salt, LiFNFSI. Olivine-based cathodes, 

especially LiFePO4, gained significant attention, with Goodenough's group 

pioneering its development while a crucial breakthrough was the discovery of a 

carbon-coating process. While LiFePO4 is thermally stable, its redox potential is 

relatively small (3.5 V vs. Li+/Li). LIBs comprise an array of electrochemical 

devices, encompassing various cathode types, while predominantly employing 

carbon as the anode material. Dissimilar to other branches of electrochemistry, it 

operates through an intercalation mechanism. 
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3.3  TYPES OF LITHIUM-ION BATTERIES 

The selection of cathode material is a key factor in defining the performance 

characteristics of LIBs, which are often employed in a variety of applications. LTO 

(Lithium Titanate Oxide), which is well-known for its outstanding cycle life and 

safety, is one of the frequently utilized cathode materials and is ideal for 

applications demanding durability and quick charging. NMC is widely used in 

consumer electronics and e-mobility because it provides a balanced combination of 

energy density, power capability, and cycle life. The safety and extended cycle life 

of LFP makes it perfect for power tools and stationary energy storage. LMO is 

preferred because of its thermal stability, whereas LCO, which is frequently used 

in portable devices and offers high energy density but has a short cycle life, is less 

durable. High energy density NCA is preferred in high-performance applications 

like some e-mobility. These cathode materials are chosen based on the requirements 

of each application, weighing aspects including energy density, cycle life, safety, 

and cost. NMC with a 60% market share [186] is the most popular LIBs cell 

chemistry for e-mobility itself and has several variants. 

 

Fig. 3.1  Performance attributes of different lithium-ion cells. 
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Several important internal & external factors influence the design of LIBs suitable 

for e-mobility. The complex interaction of the cell to the design of the battery, 

design of the vehicle, operational aspects, and environmental aspects plays an 

active role in the interplay of electrochemistry of various components of the cell 

like chemical composition of electrodes and electrolyte, size & distributions of 

active material particles, the thickness of electrodes, porosity of the electrodes, 

foam factor, cell dimensions, and tab placement. Within different LIBs cell 

electrochemistry, numerous performance attributes come into play, encompassing 

electrical performance, safety, specific power and energy, lifespan, thermal 

stability, C rate for both charging and discharging, and cost, etc. as explained in 

Fig. 3.1. Various electrochemical compositions in LIBs showcase distinct 

characteristics, and the choice of a specific cell for a particular application relies on 

finding a balance among these diverse attributes.  

3.3.1   NMC CELL 

NMC based cells which can produce 3.6V to 3.7V and are available in different 

foam factors and configurations are most popular among high-energy, high-power 

density applications such as electric vehicles. John B. Goodenough's work during 

1980 on LiCoO2 and is conceptualized as a combination of a layered NaFeO2-type 

oxide and a closely related lithium-rich Li2MnO3 oxide, with the amount of the 

latter linked to the initial lithium excess and this development was carried out by 

four different four research teams during 2000. Among different NMC cells, 

LiNixMnyCozO2, NMC, where x + y + z = 1 is a highly promising material class, 

attention is now turning to Ni-rich NMCs with x > 0.5. Increasing the nickel content 

allows for more lithium extraction from the layered NMC structure within a given 

upper potential limit, thereby enhancing specific energies. 

3.3.2   LFP CELL 

LFP cells can produce 3.2V are also available in different foam factors and 

configurations are most popular among moderate energy and moderate power 
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density applications. Due to its affordability, lack of toxicity, abundant iron 

resources, non-usage of Ni and Co materials, exceptional thermal stability, safety 

features, electrochemical performance, and specific capacity, considerably longer 

cycle life than other LIB it has garnered significant market adoption.  

3.3.3   COMPARISION 

Globally for e-mobility applications, NMC maintained its lead with 70% and above 

market share, followed by LFP at nearly 27% and above. Whereas NCA 

(LiNi0.8Co0.15Al0.05O2) at around 3% among all LIB cell electrochemistry, among 

them LFP are rising fast whereas Ni rich NMC are losing market constantly. Many 

techniques are used to enhance technology. For example, silicon has been used to 

replace all or part of the graphite in the anode, making it lighter and increasing the 

energy density. Currently, silicon makes up around 30% of anodes. When 

innovative lithium metal anodes are commercially accessible, they may produce 

even higher energy densities.  

NCA cathodes display a high specific capacity and excellent calendar life. This 

capacity contribution primarily hinges on the cobalt element, while the doped 

aluminum element exhibits minimal electrochemical activity. Integrating 

aluminum with reduced cobalt content can enhance thermal stability and reduce 

costs. Despite NCA cathode materials being approximately 50% more expensive 

than LFP due to the latter's abundant elements (Fe and P), NCA offers around 30% 

higher capacity and operates at a higher voltage of 3.6V equated to 3.2V for LFP, 

positioning NCA as a promising commercial cathode material in the LIB domain. 

However, NCA cathodes exhibit notable rapid capacity degradation and inferior 

thermal performance when operated at high voltages or elevated temperatures 

beyond room temperature. 

3.4  WORKING PRINCIPLE 

LIBs represent a category of rechargeable energy storage devices renowned for 

their ability to undergo multiple charging and discharging cycles. Nonetheless, their 
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delicate nature necessitates careful handling to prevent potential failures. The 

charging process involves the migration of lithium ions from the cathode to the 

anode through the electrolyte, with concurrent electron flow through the external 

circuit in the same direction. Conversely, during discharge, the stored lithium ions 

move back from the anode to the cathode. In both processes, lithium-ion is extracted 

from and inserted into host materials, a phenomenon referred to as intercalation 

[187],[188]. It is worth emphasizing that every constituent component plays a 

crucial role in determining battery performance and safety. The pursuit of the 

optimal combination of these components is pivotal for advancing battery 

technology. LIB makes use of charged particles of lithium to convert chemical 

energy into electrical energy. LIBs initiate their lifecycle in a fully discharged state, 

with all their lithium ions integrated into the cathode, lacking the capability to 

generate electricity. Before usage, the cell must undergo a charging process. During 

this charging phase, an oxidation reaction transpires at the cathode, resulting in the 

loss of negatively charged electrons [189].  

 

Fig. 3.2  Illustration depicting the operational concept of a lithium-ion 

battery. 
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To preserve charge equilibrium in the cathode, a corresponding quantity of 

positively charged intercalated lithium ions dissolves into the electrolyte solution. 

These ions then migrate to the anode, where they become integrated into the 

graphite structure. Simultaneously, this intercalation reaction introduces electrons 

into the graphite anode, effectively 'binding' the lithium ions. LIBs operate based 

on the "rocking chair principle", where chemical energy is converted into electrical 

energy through redox reactions. During charging, lithium-ion migrates towards the 

negative electrode (anode), and during discharge, lithium-ion returns to the positive 

electrode (cathode). This back-and-forth movement- insertion (intercalation) or 

extraction (deintercalation) of lithium-ion between the electrodes defines the 

working principle of LIB [190]. The schematic of the working principle of LIB is 

shown in Fig. 3.2.  

The reversibility in any LIBs is an important criterion and is defined as Coulombic 

efficiency (CE) which is the ratio of its discharge capacity to the preceding charge 

capacity, considering specific operational conditions. These metrics gauge the 

reversibility of electrochemical energy storage reactions, with a value below one 

indicating the presence of non-productive, often irreversible reactions. Non-

productive reactions, while some may be reversible and only lead to self-discharge, 

others pose more severe consequences due to their irreversibility. Recognizing the 

significance of CE operating as closed chemical systems with a finite supply of 

reactants (lithium-ion and anode/cathode active materials). Meeting such demands 

necessitates nearly flawless chemical reactions [191]. While CE stands as a crucial 

feature, the inevitable decline in CE is attributed to variations in diverse 

environmental and operational conditions [192]. 

3.5  PRESENT STATUS 

LIBs have become increasingly popular for use in e-mobility due to their energy 

density, and long life. The major push towards LIBs in e-mobility is partially due 

to governmental support [193], lower cost, improved durability [73], increased 
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range [194], and faster charging. In any LIB the primary components are cells, 

BMS, and other components, like casing, thermal management, wires, connectors, 

packing materials, and sensors form part of the balance of the system [195]. Most 

of the research is centered on cells & BMS. From the first LIB commercialized by 

SONY, with galvanic and volumetric capacities of 80 Wh/kg and 200 Wh/L, the 

cell today has achieved more than tripled within 30 years [32], with maximum 

growth in development coming in last a decade. Cell electro-chemistries are several 

in the LIB family with comparable advantages and disadvantages with certain 

criteria like higher energy and power densities, driving range per charge, safety, 

temperature range, life, etc. fit with NMC, NCA, and LFP and are presently 

commercialized [196], apart from this, several other electrochemistry is in different 

level of demonstration and at R&D stage.   

According to current research in materials chemistry, LIBs are projected to achieve 

a total initial cell galvanic energy density of 350-400Wh/kg, which falls short of 

meeting the energy requirements for e-mobility applications. The experiments have 

prompted the exploration of beyond LIB initiatives, which began around a decade 

ago. The initial beyond lithium-ion efforts focused on three main technologies 

relevant to the automotive industry: lithium-air, lithium-sulfur, and lithium-metal. 

Lithium air has faced challenges related to life and energy efficiency, limiting its 

practical application to research labs [197],[198]. Although sulfur chemistries have 

shown more promise than lithium-air, their low densities have limited their use in 

niche market applications such as unmanned aerial vehicles [199]. Among the 

future technologies, lithium metal has made the most progress in the past decade, 

and its potential impact is reflected in the recent issuance of automotive lithium 

metal cell targets by the USABC. The recent development of novel liquid 

electrolytes compatible with lithium metal, along with the discovery of solid 

lithium superionic conductors, has renewed the viability of solid-state batteries 

[89].  



49 
 

Recent investigations have been concentrated on augmenting energy and energy 

density, power, and power density, enhancing safety measures, reducing charging 

times, and cutting costs. Additionally, specialized studies tailored to specific 

application domains of LIBs have garnered increasing attention to maximize 

performance while minimizing limitations [200],[201]. Manufacturing of LIB is a 

multifaceted process that encompasses a range of activities from the initial 

preparation of electrodes using diverse chemical compositions to the assembly of 

cells with specific configurations and form factors [14],[202]. This progression 

extends from the cellular level to modules and ultimately to the construction of 

battery packs, each stage demanding distinct methodologies. Integral to this process 

is the application of multiscale modeling, which is essential for the development of 

an effective battery pack.  

Material science and the rigorous monitoring of various factors play a crucial role 

in shaping the future trajectory of this technology. LIB technology has already 

achieved significant milestones in the past, and its continued advancement hinges 

on the unwavering pursuit of superior materials and the precise management of 

operational parameters. As delineated in Figure 3.3, this battery-making comprises 

a spectrum of engineering disciplines, highlighting the necessity for modeling at 

various scales, from the material science domain to the comprehensive design of a 

functional battery pack. 

 

Fig. 3.3  Multiscale modeling from atomic level to battery pack level. 
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Energy and power density a critical metrics for LIB, especially in applications 

where high peak energy or power is required for short periods [203]. LIBs with 

high power density can deliver more power per unit mass or volume, which makes 

them ideal for such applications and represents the rate capabilities at which a LIB 

can supply energy, essentially indicating the maximum current that a LIB of a 

specific size can discharge [204]. This metric is determined by dividing the power 

output of the battery (Vo × Io) by its mass (kg) or volume (m3), maximizing the 

power density of LIB is central to the success and widespread adoption of e-

mobility. Higher power density translates into increased range, improved 

performance, and faster charging, all of which are essential for the growth of this 

sustainable mode of transportation.  

Scientists and researchers have dedicated substantial efforts towards enhancing the 

energy and power density of LIB through two primary approaches: internal 

structure optimization-focused design: The approach involves refining the physical 

arrangement and configuration of components within the battery pack itself. 

Researchers explore ways to improve the geometry and organization of the battery's 

internal elements, such as the cell, BMS, partitions, thermal management, ware & 

harnesses, and battery box [205], [206] by optimizing the internal structure, they 

aim to enhance efficiency, and this results in more efficient and powerful battery 

power densities [207]. Another option is materials-oriented design: In this 

approach, the emphasis is on developing and utilizing advanced materials for 

various components of the cell. Researchers work on creating new materials for the 

anode [208] ,[209] cathode [210], [211] and electrolyte [212], [213] that offer 

higher energy density, better conductivity, and improved thermal stability.  

In other words, the primary challenge that must be addressed to usher in the era of 

e-mobility is the extension of energy storage systems. Within the realm of 

electrochemical devices, LIBs have emerged as a pivotal rechargeable battery 

technology [214]. They have found widespread application in the realm of portable 

electronics and are increasingly being adopted by the e-mobility industry [215]. 
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LIB technology presents a significant potential to displace traditional fossil fuels in 

powering vehicles, owing to its exceptional energy density and scalability for large-

scale production. Furthermore, there is still room for further cost reduction in the 

production of LIBs. 

Over the past decade, a range of cutting-edge characterization tools has become 

essential for the comprehensive study, optimization, characterization, and modeling 

of LIB across diverse and specialized applications [216]. The diagnostic and 

detection process for capacity and power degradation is typically categorized into 

four overarching approaches. To detect degradation trends, temporal redundancy 

depends on expert and knowledge-based techniques that use limit, and trend checks 

on inputs and outputs based on historical system information. This method is widely 

employed in various industries today and is considered a standard approach. 

Hardware redundancy employs a majority vote ruling logic to detect capacity 

degradation trends [217]. While this approach is popular and widespread adoption 

is hindered by significant costs, making it less feasible for various applications. 

This approach aims to leverage the strengths of diverse algorithms to enhance the 

overall effectiveness of the diagnostic and detection process. Details of cell-level 

performance degradation modes are as follows: 

• Conductivity loss: It refers to a reduction in the capacity of a material to direct 

electrical current and it implies a decline in the efficient flow of electric charge 

within the battery components. It reported damage of current collectors peeling 

and degradation of binder as potential degradation mechanisms in LIB, whereas 

[218] researched that peeling and degradation of binder are other potential 

degradation mechanisms.  

• Loss of lithium inventory: A significant phenomenon in the context of LIB, 

particularly when considering the intricacies of the solid electrolyte interphase 

(SEI). Loss of lithium inventory occurs when certain compounds within the SEI 

structure tend to trap lithium ions, making them unavailable for participation in 

the electrochemical reactions crucial for charge storage. Essentially, these 
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trapped lithium ions are sequestered and cannot contribute to the flow of 

electrical current, leading to a reduction in the overall capacity and performance 

of the battery [92]. It is concluded that lithium-ion is consumed by parasitic 

reactions, such as growth and decomposition of solid electrolyte interface, 

another phenomenon that occurs due to electrolyte decomposition as researched 

by [101],[219] concluded that formation is another significant potential failure 

mechanism. 

• Loss of active material at anode: The degradation mechanism is responsible for 

a decrease in the LIB capacity, efficiency, and overall performance and 

contributes to a shorter lifespan. Various research on physical damage [220], 

chemical reaction, binder decomposition [33], contact isolation, graphite 

exfoliation, lithium plating and dendrite formation [221], electrode particle 

cracking [203], corrosion in current collector [222] are found to be significant 

in addressing this potential degradation mechanism. 

• Loss of active material at the cathode: The degradation mechanism is due to 

physical damage, chemical reaction, binder decomposition, contact isolation, 

electrode particle cracking, transitional metal dissolution, and corrosion in the 

current collector.  

• Impedance change- It is observed that change in impedance is also due to the 

depletion of electrolytes of free lithium-ion [223]. 

• Electrode slippage or stoichiometric drift is a potential degradation mechanism, 

as researched by and is due to the reduction in the lithium-ion from the negative 

electrode will decrease SOC whilst the positive electrode remains the same 

[224]. 

Understanding of capacity and power degradation and subsequent failures are still 

very limited and more limited yet dependable and real-world models and methods 

for the detection and prediction of these diverse phenomena. Capacity degradation 

and its accurate estimation & reliable fault diagnosis technique are decisive in the 

assurance of safety, stability, and reliable operation of the LIB e-mobility batteries 
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[224],[225]. Material science takes care of enhancing energy & power densities, 

safety concerns, increasing life, reliability, and safety concerns. Multidisciplinary 

approaches towards decoding cells from different approaches, monitoring, and 

estimation of various dynamic states such as charge, health, function, etc., are 

employed for higher deployability, understanding remaining useful life, end-of-life 

prediction, and warranty prediction. 

As manufacturers and end users seek enhanced performance and safety, thorough 

characterization becomes crucial for detecting manufacturing and design flaws. 

Evaluating LIBs through both in-situ and destructive testing is essential to optimize 

performance and safety. This involves identifying effective materials and processes 

that improve these aspects without inflating battery costs. Nonlinearity and 

aperiodicity of data originating from short- and long-term dynamical behavior are 

two of the main difficulties in multivariate time series forecasting. Research on 

modelling this long-term dependence information in time sequence series jobs has 

always been focused on the fact that a long-term relationship's memory can more 

accurately forecast the time series' next step. Multivariable time series modeling 

and prediction are used in engineering, energy, meteorology, earthquake, business, 

and transportation for desired forecasting accuracy through various methodologies 

like statistical and ML [226]. 

The accurate modeling & estimation of states guarantee the safety, usability, and 

performance of LIB and avoid over-charge and over-discharge [227].  State 

estimation methods are divided into three categories, the first category is traditional 

methods, the second category is model-based methods, and the last is data-driven 

algorithms [228],[229]. Traditional methods include the integral method and open-

circuit-voltage method, model-based methods, particle filtering algorithms [230]. 

Data-driven algorithms include fuzzy control, ML-based, and neural network 

methods [231],[232]. Co-estimation of states is possible only with model and data-

driven methods [233]. 
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As the demand for higher performance and enhanced safety grows among both 

battery manufacturers and end users, the importance of characterization becomes 

increasingly pronounced for identifying manufacturing and design defects. To 

enhance performance and safety, batteries require evaluation through a 

combination of in-situ and destructive testing. This involves identifying effective 

materials and processes without significantly increasing the cost of the batteries. 

The choice of a suitable characterization technique is contingent on the required 

information, the desired accuracy level, and the budget allocated for qualification 

and testing. Nondestructive testing offers the advantage of avoiding battery 

disassembly, although the information extracted may be limited [234]. The most 

precise techniques typically involve the use of expensive instruments and extended 

time, but they are essential at times to comprehend failure mechanisms and refine 

battery design. A comprehensive characterization methodology comprises different 

measurements of cell electrical parameters in Fig. 3.4. 

 

Fig. 3.4  Measurement procedure for LIB’s cell characterization. 

A drawback of LIBs is that for appropriate, safe, and durable applications with 

optimum life, they require constant surveillance to operate in a constricted band of 
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voltage, temperature, and other mechanical conditions. Another important LIB 

property is that its mechanical values can change during operation, as it operates on 

a rocking chair mechanism, as proposed by Armand in 1970. Over various 

operations, LIB active materials swell and contract with a proportion of non-

reversible physical changes, which partially reflects the SOH. Mechanical 

instabilities such as plastic deformation, fragmentation, disintegration, and 

fracturing are caused by this strain. These effects are closely related to the SOH or 

RUL since they are recognized as a primary cause of performance fading during 

the course of the cycle [112],[235]. 

Batteries, as an electrochemical entity with a intricate planetary of materials 

(electrodes, electrolytes, binders, and separators) at the cell level and different 

electrical, mechanical, and electronic components at the battery pack level with 

large design space subjected to wide variation in operational & environmental 

conditions. Cell design parameters can be approached in multidirectional ways and 

can be built into different simulation models to accomplish and analyze its 

behavioral theme for chemical, electrical, or hybrid points of view with or without 

temperature or other mechanical stresses [236]. While intricate operational, 

behavioral, and environmental phenomena limit the usefulness of traditional 

deterministic modelling techniques and pose a significant obstacle to further design 

iterations, precise future state prediction is required to shorten test durations and 

the number of cells tested. This can be accomplished by using a probabilistic data-

driven machine learning approach, which enables quantification of uncertainty to 

more effectively support design and control decisions [237]. LIB when stored or 

charged- discharged, exhibits a two-phase degradation behavior characterized by 

first, a linear phase and second a nonlinear phase where degradation is 

comparatively rapid. The multitude of degradation phenomena occurring in LIB 

complicates understanding of the two-phase degradation pattern.  
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3.6  CAPACITY DEGRADATION  

LIBs being an electrochemical component, the overall degradation is a reality and 

the factors affecting are several based on operating and environmental factors 

[238],[239]. A summary of all degradation-causing mechanisms [240],[241] on 

different electrodes. Capacity fade refers to a reduction in the cell's usable capacity, 

whereas power fade is the dip in the cell's deliverable power after degradation. 

Capacity decline and power fade are thus two typical and useful markers of cell 

ageing. The usable capacity of LIB decreases, and internal resistance rises with 

time-scaled ageing and uses induced deterioration. This is because a variety of the 

previously listed degradation mechanisms, some of which happen simultaneously, 

cause further degradation mechanisms to be triggered. Among all the degradation 

types, the directly observable effects during operation or storage are collectively 

induced electrochemical behavior change and capacity and power fade [242].  

 

Fig. 3.5  Active material degradation as a primary and secondary 

mechanism at cell level. 
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The detailed positive and negative electrode degradations are several, which 

solemnly occur singularly, but are primary degradation in positive electrodes as 

structural decomposition, and particle fracture whereas in negative electrodes, it is 

particle fracture, lithium plating, and SEI. The secondary degradation mechanism 

involves TM dissolution, O2 evolution, pSEI growth, Ni-Li site exchange, and 

island formation in the positive electrode and graphite exfoliation, island formation, 

dendrite formation, and SEI poisoning in the negative electrode, as shown in Fig. 

3.5.  

In the context of LIBs, the deterioration of inactive materials is a significant factor 

influencing cell performance. The control systems governing capacity decline and 

impedance increase in LIBs exhibit a high level of sophistication. The intricacies 

involved in the degradation mechanisms and their interactions underscore the 

complexity inherent in LIB. The dynamic interplay among various subcomponents 

within LIBs unveils an aging mechanism that encompasses both mechanical and 

chemical factors, intricately interconnected. It contributes to several critical failures 

and instances of heat-induced malfunctions [243]. The resulting heat generation 

inside a cell is a combination of reversible processes responsible for 

electrochemical reactions and irreversible processes which in turn are a 

combination of enthalpy change, active polarization, ohmic heating, and heating 

from mixing. 

3.7  BATTERY MODELS  

The operational performance and behavior of LIBs hinge on the integrity of their 

intricate internal structure. Currently, gauging the SOH directly poses challenges, 

given the expense and potential disruption associated with embedding sensors 

within the structure. Instead, employing battery models that precisely forecast long-

term behavior serves as a digital twin, which operates alongside the actual battery, 

synchronizing intermittently using data from limited measurable factors like cell 

voltage, temperature, and current. At the same time, determining SOC, crucial for 
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intelligent charging and range determination also proves challenging, necessitating 

estimation by the digital twin [244].  

While different battery models play a crucial role in forecasting future performance, 

it is equally important to focus on the parameterization and validation processes. In 

many studies, the foundational aspect of characterization relies on electrochemical 

measurements, where galvanostatic methods serve as a vital tool for establishing 

metrics such as capacity, resistance, and coulombic efficiency. Despite their 

apparent simplicity, these measurements offer substantial insights. Broadly, there 

are two primary methodologies for modeling: empirical and physics based. The 

empirical approach entails a step-by-step process of applying equations and 

parameters to attain the optimal alignment with experimental data where the 

underlying equations may lack intrinsic significance, merely aiming to replicate the 

behavior of the battery treated as a mysterious system. This can be further 

subdivided into the electrochemical model, thermal model, aging model, and safety 

model, which in turn gives vital states of a LIB like SOC, SOH, RUL, etc.   

In the realm of monitoring multiple states like SOC and SOH, simulations must be 

both rapid and accurate, delivering real-time results. By anticipating vital 

performance parameters such as capacity and lifespan, these models emerge as 

valuable tools in electrode, cell, and pack design. They empower exploration within 

the battery design space, allowing for variation and combination of constituent 

materials, electrode structures, thermal management, and other factors. This 

eliminates the need for constructing costly and potentially risky prototypes. A 

diverse range of battery models has been created, each exhibiting varying levels of 

intricacy, thereby proving valuable across a spectrum of application domains [245]. 

The physical process inside a cell results in multi-scale physical modeling either 

through electrochemical, aging, stress, or thermal modeling, which in turn uses 

empirical modeling, equivalent circuit modeling, or data-driven modeling 

techniques as explained and shown in Fig. 3.6.   
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Fig. 3.6  Different modeling techniques for battery packs. 

Empirical modeling of LIB involves the development of models based on observed 

data and experimental results rather than relying solely on theoretical principles, 

which are particularly useful for predicting battery performance, optimizing 

charging, and discharging strategies, and understanding the impact of external 

factors on battery behavior. High-quality electrochemical battery models stand out 

as exceptionally accurate within the realm of battery modeling. Their advantage 

comes from their capacity to quantitatively explain important behaviors of a battery 

at the minuscule level; this is dependent on their comprehension of the chemical 

reactions occurring in the battery in both the liquid phase and the electrode. Because 

data-driven modelling can handle nonlinearity, it performs better than other 

approaches in parameter prediction [246]. A general machine learning system for 

battery state monitoring can mimic the nonlinear relationship between input and 

output variables by putting a learning model into practice. On the other hand, the 

hybrid approach derives simulated behavior from equations recognized to 

accurately represent the genuine physical processes at play.  

3.8  CHAPTER SUMMARY   

In the ambit of electrochemical energy storage, LIBs have emerged as a leading 

choice, surpassing other electrochemical storage options like lead acid or Ni-
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cadmium batteries, owing to their promising applications in e-mobility and grid-

level energy storage. Their superiority is underpinned by a suite of advantageous 

characteristics, including remarkable energy density, robust power capabilities, 

high efficiency, and minimal self-discharge, thus positioning them as highly 

sought-after solutions across various domains. Capitalizing on advancements in 

electrode and electrolyte material manipulation, researchers have adeptly tailored 

LIB to accommodate diverse operational settings and objectives. This chapter 

presents a comprehensive exploration of the historical evolution and developmental 

phases of LIB, illuminating the formidable challenges encountered in electrode 

fabrication, cell assembly, characterization, and understanding the different 

operational states, particularly concerning e-mobility applications. It introduces 

various electrode types, discusses the performance attributes of distinct cell 

configurations, researches their working principles, assesses their present status, 

and examines multiscale modeling techniques and cell-level performance 

degradation modes. Through this comprehensive exploration, the chapter aims to 

provide valuable insights into the advancements, challenges, and methodologies 

shaping the current landscape of LIB technology. 
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CHAPTER 4    

METHODOLOGY AND EXPERIMENTAL SETUP 

4.1  CHAPTER OVERVIEW 

The chapter overview outlines the contents of the document, which primarily 

focuses on machine-learning applications in lithium-ion batteries. It covers 

different ML methods utilized in experiments, covers support vector regression, 

decision trees, k-nearest neighbor, random forest, and linear regression. 

Additionally, it discusses performance evaluation and error metrics such as mean 

absolute error, mean square error, root mean square error, and mean absolute 

percentage error. The document also details experiments related to the state of 

health and charge, along with experimental setups, capacity aging equipment, SOH 

experimentation, and cell selection protocols. Physics-inspired feature engineering 

is pivotal to this research, from cell selection process through meticulous evaluation 

of performance attributes- capacity from CCT/ CDT, and OCV variance, post-

testing at various temperatures (25°C, 35°C, etc.) and discharge rates (1C, 2C, etc.), 

essential for assembling battery packs tailored for detailed experimentation and 

gives appropriate input to the application of ML to a refined accuracy of 

performance predictions and ensures reliability and robustness of experimental 

outcomes, which ultimately advancing the understanding and management of LIBs 

diverse conditions. The chapter also includes cell capacity measurement, SOC 

experimentation, assembly of battery packs, battery management systems, and 

measurement of capacity and cell selection, concluding with a chapter summary. 

4.2  MACHINE LEARNING IN LIB 

Starting in early 1943, efforts were dedicated to exploring concepts inherent in 

nervous activity, giving rise to the initial mathematical model of neural networks. 
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Additionally, in 1949, there was a focus on developing theories that elucidate the 

connection between behavior and the workings of neural networks and brain 

activity. The foundational work of the Turing test, which was introduced in 1950, 

further contributed to these advancements.  The future development gained 

momentum thanks to various hardware and software innovations in computing. 

Currently, machine learning stands at the forefront of research and innovation 

across diverse fields and is extensively employed in chemistry, physics, biology, 

engineering, and materials science [247]. ML is employed to improve the 

estimation accuracy of LIBs by reducing the calculation burden. ML can be 

characterized as the creation of computer algorithms that acquire knowledge from 

examples, make predictions, and improve performance based on data inputs rather 

than being explicitly programmed to execute a specific task. 

The concept of multiscale modelling has emerged in recent decades, using data 

from computational models at finer scales to simulate continuum-scale behavior 

instead of depending on empirical constitutive models. Various methods have been 

developed to bridge across multiple length and time scales. While the fundamental 

ideas of multiscale modeling have historical roots dating back to da Vinci, the 

recent surge in its development is attributed to advancements in parallel computing, 

experimental techniques for atomic-level characterization of structure-property 

relations, and theories accommodating multiple length scales [248],[249]. Artificial 

intelligence (AI) and its subset, machine learning (ML), are useful tools to help 

researchers effectively solve the parameterization and data difficulties on the user 

and production side. Managing, monitoring, understanding, and assimilation of the 

large amounts of data generated for LIB is a big task. It takes a significant team 

effort from experimentalists, modelling experts, and AI/ML specialists. ML and 

multiscale modeling are two distinct yet interconnected fields that play vital roles 

in diverse scientific and technological domains. The integration of ML with 

multiscale modeling has become increasingly prevalent. ML techniques can 

enhance the predictive capabilities and efficiency of multiscale models by learning 
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complex relationships within the data, optimizing simulations, and aiding in the 

interpretation of large datasets. 

ML methods are extensively employed to characterize LIB performance, lifetime, 

reliability, and safety, apart from accelerating the understanding of new materials, 

chemistries, cell designs, and beyond. At this stage, there are four main categories 

for data-driven approaches: supervised, unsupervised, semi-supervised, and 

reinforced learning. These are further divided into subcategories based on the 

variations in data-mining techniques, such as support vector machines (SVM), 

relevance vector machines (RVM), long short-term memory (LSTM), Gaussian 

process regression (GPR), and deep learning [250],[251].  

ML algorithms are broadly categorized into four main types based on the type of 

data they use, and the type of learning involved as in Fig. 4.1. The training process 

of a supervised learning algorithm involves the provision of both the input data and 

their associated outputs, as it is trained on labelled data. By reducing the error 

between its expected and actual outputs, the algorithm gains the ability to map input 

data to output labels. An unsupervised learning algorithm is trained on unlabeled 

data, which means that it doesn't have any predefined output labels. By combining 

related data points, the objective is to find patterns and organization in the data. 

Combining supervised and unsupervised learning results in semi-supervised 

learning. To train the algorithm, a small amount of labelled data is combined with 

a larger amount of unlabeled data. This method works well when it is difficult or 

costly to acquire labelled data. Through interaction with its surroundings, an agent 

that uses reinforcement learning learns to carry out specific behaviors in response 

to rewards or penalties from the environment. The goal is to maximize the total 

reward received over time by learning a policy that maps states to actions. 
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Fig. 4.1  Different ML methods employed in LIB state estimation. 

Among different types of ML methods, there are several advantages and 

disadvantages associated with them for creating battery models. The ageing data 

collecting, and SOH data extraction are supported by the supervised learning 

models, which also help with the optimization of performance measures that are 

based on past performance. Long computation times, inefficient data downtime, 

challenging pre-processing, and an ongoing need for updates are some of its 

disadvantages. The selection of training data in semi-supervised learning models is 

expensive and time-consuming, and the consistency of the classes may not match 

spectral classifications. Its shortcomings include unstable iteration results and low 

precision when applied to network-level data. The expense and time associated with 

choosing training material is a drawback for unsupervised learning methods [252]. 

Although varying consistency in classes may not match spectral classifications, 

there are benefits such as the potential to minimize human mistake that can be 

achieved quickly and easily. The use of reinforced learning techniques can yield 

long-term benefits for SOH and has a great capacity to address complicated issues. 

In nonlinear health profiles, it is particularly helpful for reaching perfection. It is 

only helpful, nevertheless, in complex situations like SOH where operational and 
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environmental factors are involved. The approach requires a large amount of 

computation labor and old data [198].  

Multiscale supervised learning methods offer a promising alternative to traditional 

approaches for solving challenging physical problems, particularly those involving 

partial differential equations (PDE) and multiscale phenomena [253]. These 

leverages supervised learning techniques to approximate PDE solutions while 

incorporating the governing physical laws as constraints during model training. 

This enables the model to learn from limited data and achieve accurate predictions 

even in the presence of missing or noisy information. It can also be applied to 

inverse problems, where the aim is to estimate the underlying properties or 

parameters of a system from limited measurements. By incorporating physical laws 

as constraints, it can provide efficient and precise solutions to inverse problems, 

without requiring complicated formulations or extensive computational resources. 

4.3 ML METHODS USED IN EXPERIMENTS 

There are various ML methods employed in state estimation for LIBs in e-mobility, 

and the choice of method often depends on the nature of the data, the research 

question, and the specific goals of the experiment. The following algorithms are 

used as the ML methods in experiments. 

4.3.1  SUPPORT VECTOR REGRESSION 

In 1995, Vapnik introduced Support Vector Machines (SVM) by leveraging the 

concept of minimizing systemic risk in mathematical learning theory [254]. SVM, 

in its fundamental configuration, acquires both linear and nonlinear decisions and 

essentially, it identifies the hyperplane with the maximum soft margin. For the 

nonlinear SVM regression dual formula, a Lagrangian function from the primal 

function by introducing nonnegative multipliers 𝛼𝑛 and 𝛼𝑛
∗  for each observation 𝑥𝑛 

which leads to the dual formula, where we minimize the coefficients as per equation 

9.  
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L(𝛼) =  
1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 −  𝛼𝑗
∗)𝑁

𝑗=1
𝑁
𝑖=1 𝐺(𝑥𝑖 , 𝑥𝑗) +  𝜀 ∑ (𝛼𝑖

𝑁
𝑖=1 +𝛼𝑖

∗)− 

∑ 𝑦𝑖(𝛼𝑖
𝑁
𝑖=1 +𝛼𝑖

∗)           (9) 

Subject with following conditions:  

∑ (𝛼𝑛
𝑁
𝑖=1 +𝛼𝑛

∗ ) = 0 

∀n : 0 ≤ 𝛼𝑛 ≤ C 

∀n : 0 ≤ 𝛼𝑛
∗  ≤ C 

The function used to predict new values is equal and presented through equation 

10. 

f(x) = ∑ (𝛼𝑛 − 𝛼𝑛
∗ )𝑁

𝑛=1 𝐺(𝑥𝑛, 𝑥)+ b.                (10) 

The goal of supporting vector machines (SVR) is to find a function that minimizes 

the prediction error and roughly captures the relationship between the input 

variables and a continuous target variable. Utilizing a kernel function to translate 

the data into a higher-dimensional space, SVR can manage non-linear interactions 

between the input variables and the goal variable. Because of this, it's an effective 

tool for regression problems where the goal and input variables may have intricate 

interactions. SVR's reliance on kernel functions makes it a nonparametric approach. 

4.3.2 DECISION TREES 

Developed as early as 1963, the modern form of Decision trees took place during 

1986 by John Ross Quinlan proposed a tree concept with multiple answers. Well-

liked machine learning methods, DTs are applied to both regression and 

classification problems. They are a great option for those new to machine learning 

because they are simple to comprehend, interpret, and use. It is a predictive model 

that bases its choices on incoming data and has a flowchart structure. Data is split 

into branches, and leaf nodes are assigned results. Regression and classification 

tasks are handled by decision trees, which yield models that are simple to 

comprehend. 
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4.3.3  K-NEAREST NEIGHBOR 

The K closest neighbours algorithm (KNN) is a non-parametric supervised learning 

technique in statistics that was initially created in 1951 by Evelyn Fix and Joseph 

Hodges. Thomas Cover further refined the approach. The KNN algorithm is a 

popular machine learning technique for applications involving regression and 

classification. Its foundation is the idea that similar data points usually have similar 

labels or values. During the training phase, the KNN algorithm refers to the entire 

training dataset. Before making predictions, it calculates the distance between each 

training example and the input data point using a chosen distance metric, such as 

Euclidean distance. The system then calculates the K nearest neighbours of the 

input data point based on their respective distances. Regarding categorization, the 

method forecasts the label of the incoming data point by utilizing the most common 

class label among the K closest neighbours. Regression uses the average, or 

weighted average, of the goal values of the K to estimate the value for the input 

data point. 

4.3.4  RANDOM FOREST 

In 1995, random forests (RF), a tree-based ML algorithm leveraging the power of 

multiple decision trees was created in 1995 by Tin Kam Ho [255]. An ensemble of 

several decision trees is used by the flexible RF machine learning method to 

produce predictions or classifications. Through the amalgamation of various trees' 

outputs, the RF algorithm yields a more refined and precise outcome. Its versatility 

and simplicity of usage, which enable it to tackle regression and classification 

problems with ease, are the reasons for its widespread acceptance. Because of the 

method's ability to handle complex datasets and mitigate overfitting, it can be used 

to a wide range of machine learning predictive applications. One of the most 

important features of the RF Algorithm is its ability to handle data sets with 

continuous variables; this is useful for regression and classification if the variables 

are categorical. It functions better on tasks that include regression and 

classification.  
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4.3.5  LINEAR REGRESSION 

Linear regression (LR) is a type of statistical analysis that is used to predict the 

relationship between two variables. Assuming a linear relationship between the 

independent and dependent variables, the objective is to find the best-fitting line to 

depict their relationship. By minimizing the total squared discrepancies between 

the expected and actual values, the line is found. The advantages of using these ML 

methods for LIB’s state estimation are several, ML methods are advanced with 

lower errors over the existing CC or OCV method currently employed in the 

majority of BMS for state estimation. It can produce accurate and interpretable 

predictions if you have enough relevant data. These methods usually result in higher 

accuracy, as they incorporate the user's domain knowledge. It has a feedback 

mechanism to check whether predictions are correct or not. It is sufficient to retain 

the decision boundary as a mathematical formula once the entire training process is 

over, rather than retaining the training data in memory. For smaller BMS, these are 

advantageous as to keep the computational power and cost at a minimum with a 

fair degree of errors in control. 

4. 4  PERFORMANCE EVALUATION AND ERROR METRICS  

The process of constructing ML, AI, or DL models revolves around the principle 

of constructive feedback. The iterative cycle involves creating a model, receiving 

feedback through metrics, implementing enhancements, and repeating the process 

until a satisfactory level of classification accuracy is attained. Error metrics and 

performance evaluation are essential components of many fields' evaluation 

frameworks. The most important and widely used metrics, as determined by the 

surveys, are scale-dependent metrics like Mean absolute error (MAE), Root mean 

square error (RMSE), and Mean square error (MSE), or metrics based on 

percentage errors like Mean absolute percentage error (MAPE). Metrics for 

evaluation are essential for understanding how well the model performs. One 

important aspect of these metrics is their capacity to distinguish between the 

model's outputs in an efficient manner. Performance error measures play a crucial 
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role in evaluation frameworks across diverse fields. These metrics can be 

characterized as logical and mathematical constructs specifically crafted to gauge 

the proximity of actual outcomes to the anticipated or predicted values. Academic 

literature encompasses a wide array of performance metrics and similar measures, 

being frequently cited in research studies. These metrics serve as valuable tools for 

assessing the accuracy and reliability of predictions or expectations in various 

applications [256]. Among different aspects of LIB state estimation, for evaluating 

the performance of individual ML models for predicting different states, these 

below performance metrics are used extensively [257],[258]. For this experiment, 

we carried out MAE, MSE, RMSE, and MAPE. We had considered  𝑦𝑖  as the 

estimated target output and 𝑦 is the corresponding correct target output.   

4.4.1  Mean absolute error 

The Mean absolute error (MAE) serves as a statistical metric for assessing the 

precision of a forecasting model, be it a regression model or a time series model. It 

gauges the typical magnitude of errors between the anticipated values and the actual 

values, all within the units of the response variable. Computed as the average of the 

absolute disparities between predicted and actual values, the MAE represents the 

meaning of these absolute errors. A lower value is preferable, the optimal score is 

0 and the permissible range is (0 to infinity). Mathematically MAE is presented 

through equation 11. 

MAE(𝑦, 𝑦
^

) =
∑ |𝑁−1

𝑖=0 𝑦𝑖−𝑦
^

𝑖|

𝑁
       (11) 

4.4.2  Mean square error 

The Mean square error (MSE) is the mean squared difference between the observed 

values in a statistical study and the values predicted by a model are calculated by 

squaring the discrepancies. It is crucial to square the differences between the 

observed and expected values when comparing them since some data values may 

fall short of the expectations and result in negative differences, while other data 
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values may exceed them and result in positive differences. Squaring the differences 

eliminates the chance that the observations will add up to zero, so addressing the 

equally common scenario of observations being higher or lower than the projected 

values and equation 12 mathematically represents the mean square error (MSE). 

MSE(𝑦, 𝑦
^

) =
∑ (𝑦𝑖−𝑦

^
𝑖)2𝑁−1

𝑖=0

𝑁
       (12) 

4.4.3  Root mean square error  

The Root mean square error (RMSE) serves as a statistical metric commonly 

employed to assess the precision of forecasting models, such as regression or time 

series models. It gauges the disparity between predicted and actual values, 

expressed in the units of the response variable. The square root of the average of 

the squared variances between the expected and actual values is used to calculate 

the root mean square error, or RMSE. In essence, it is the square root of the mean 

of squared errors; a smaller number indicates a more accurate forecast. The optimal 

score is 0.0, and a smaller value is considered more favorable, with the range being 

(0 to infinity). Despite its widespread use for evaluating forecast accuracy, the 

RMSE has a limitation in that it lacks normalization. This implies that its 

interpretation is influenced by the scale of the response variable, making 

comparisons challenging across diverse datasets with varying scales. The 

mathematical presentation of RMSE is presented through equation 13. 

RMSE(𝑦, 𝑦
^

) =
√∑ (𝑦𝑖−𝑦

^
𝑖)2

𝑁−1

𝑖=0

𝑁
, or RMSE = √MSE   (13) 

4.4.4  Mean absolute percentage error  

The Mean absolute percentage error (MAPE) is a statistical metric that assesses the 

precision of a forecasting model, frequently applied in engineering, business, 

economics, etc. It calculates the average percentage variance between the projected 
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and actual values, with a reduced MAPE signifying improved forecast accuracy. 

The mathematical presentation of MAPE is presented through equation 14. 

MAPE(𝑦, 𝑦
^

) =
100%

𝑁
∑

|𝑦𝑖−𝑦
^

𝑖|

|𝑦𝑖|

𝑁−1

𝑖=0

       (14) 

 

4.5  EXPERIMENTS FOR STATE OF HEALTH AND STATE OF 

CHARGE 

To cover the maximum identified research gaps and their potential applications, 

this research’s experiments were devised in such a way that it covers both cell and 

battery packs of different cell electrochemistry for different applications and at the 

same time uses various environmental and operating conditions and uses different 

ML methods. In this chain of experiments, different cell electrochemistry was used 

having different foam factors, and were experimented under different operational 

and environmental conditions. Different ML methods were employed to arrive at 

different error metrics. The experiment plan brief is outlined in Fig. 4.2 below for 

both cell electrochemistry and different states.  

 

Fig. 4.2 Experimental flowchart for SOC and SOH for cell and battery. 
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4.5.1  EXPERIMENTAL SETUP FOR STATE OF HEALTH 

The experimental procedure and applicability of various ML-based modeling have 

been done through defining and elaborating the research objectives. The 

information provided by different manufacturers varies based on the specific 

battery cell and is typically presented in tables and graphs which generally include 

nominal, electrical, mechanical, and safety specifications. As an illustration, the 

table below highlights the nominal characteristics of LG Chem and Fareast lithium-

ion cells, as found in the datasheet information. In the research work, high-power 

NMC cells with cylindrical foam factor with details are listed in Table 4.1, and the 

parameters used are tested and analyzed for SOH modeling. The NMC cells are 

widely used as they have high power- high energy densities, which are essentially 

needed in e mobility applications. This enables the suitability in application and 

maintained its lead with 70+% market share, followed by LFP at nearly 27+% and 

NCA at around 3+% among all LIBs cell electro-chemistries for e mobility 

applications.  

Table 4.1 Types of NMC cells used in SOH experimentation. 

Cell 

description 

NMC CELL (NMC 811, 18650 [Cylindrical]) 

Dataset cell “a” Experiment cell b” 

Photograph of cells

 

Manufacturer LG Chem Fareast 

Cathode Ni0.84Mn0.06Co0.1 Ni0.84Mn0.06Co0.1 

Anode Graphite +SiO Graphite +SiO 

Nom. 

Voltage(V) 
3.6 V 3.6 V 

Nominal 

Capacity 
3.0 Ah 2.6 Ah 

Voltage 

Range under 

extreme 

conditions 

2.50V~3.65V 

[25℃＜T≤60℃] 

2.00V~3.65V 

[-20℃≤T≤0℃] 

2.50V~3.65V 

[25℃＜T≤60℃] 

2.00V~3.65V 

[-20℃≤T≤0℃] 
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Max Dis. 

Current 
20 A 7.8 A 

Acceptable 

Temp. 
−5 to 50°C −5 to 50°C 

Nominal 

Mass 
47 g 44 g 

 

At the start, these commercially available cells were subjected to a cell sorting 

machine in Fig. 4.3 and initial sorting was carried out based on grouping end cell 

voltage and cell internal resistance. A total of 181 cells were selected based on the 

set of acceptable criteria. Following the cell selection, a preconditioning test is 

conducted under IEC 62660–1. The secondary lithium-ion cells for the propulsion 

of electric road vehicles – Part 1: Performance testing [1] in 512 channel cell 

grading machines as per Fig. 4. 3 to ensure cell stabilization. This test consists of 

one cycle at the manufacturer-specified current, followed by a 30-minute rest 

period. Following the preconditioning test, a reference performance test (RPT) is 

carried out at the beginning of life (BOL). Subsequently, the cells of each test case 

(TC) undergo cycling based on the conditions before the periodic RPT is conducted. 

Cell sorting machine is an important aspect for battery assembly, as it 

systematically sorts cells based on specific parameters of voltage, internal 

resistance, and capacity, ensuring that only cells meeting the desired criteria 

progress to the next stage of assembly. By accurately categorizing cells, the sorting 

machine enhances the consistency and reliability of battery packs, reducing the risk 

of performance variations or failures. This process is essential for applications 

requiring high precision and uniformity, such as electric vehicles and energy 

storage systems. 
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Fig. 4.3  Cell sorting machine for voltage and internal resistance. 

4.5.2 CAPACITY AGING EQUIPMENT FOR SOH EXPERIMENTATION 

Experimental cells as shown in Fig. 4.4 (a) are capacity cycle aging was carried out 

using a Raunik SCTS and a Raunik high-precision Model: LBT21084 is a 

multichannel battery testing system as shown in Fig. 4.4 (b). This 5V 3A / 6A 512-

channel Battery Grading Machine is primarily designed for the formation and 

capacity grading of incoming cylindrical lithium-ion batteries. Formation involves 

the initial low-current charging of a newly manufactured lithium-ion battery to 

develop a passivation layer on the negative electrode, known as the solid electrolyte 

interphase (SEI) film. Upon receipt of the cells, capacity grading assesses the cell's 

capacity through a charge-discharge cycle and categorizes the cells based on this 

capacity value. This process ensures proper balance during battery pack assembly. 
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LBT21084 is a multichannel battery testing system that consists of a computer 

system, control software, communication interface, and a battery detection cabinet. 

The detection cabinet includes a clamp and a board for supporting the clamp, a 

constant current and voltage charging source, a constant current discharging source, 

a storage control circuit, current and voltage sampling circuits, a main control CPU, 

data memory, a microcontroller program, and a control panel.  

          

Fig. 4.4  (a) Experimental cells (b) 512 cell grading machine for cell 

preconditioning test. 

Single cells were inserted into 18650 battery holders (memory protection devices) 

that were sold commercially. To reduce voltage, drop an 18-gauge wire was used 

to link the holders, and cable lengths were maintained under eight feet. The SPX 

Tenney Model T10C-1.5 environmental chambers, which have temperature 

controls ranging from -73°C to 200°C, were used to house the cells during the 

cycling process. 



76 
 

4.5.3 SOH EXPERIMENTATION AND CELL SELECTION  

While complete elimination of inconsistency resulting from the production process 

may not be achievable, employing screening methods proves effective in 

identifying batteries with satisfactory consistency. This, in turn, enhances the 

reliability, safety, and overall lifespan performance of packs. Utilizing criteria such 

as capacity, internal resistance, and self-discharge rate in screening methods can 

notably enhance the overall performance of the pack. Finally, among sorted cells, 

the selection of TC was carried out as per Fig. 4.5 for capacity selection through 

from continuous charge test/ continuous discharge test (CCT/CDT), and as per Fig. 

4.6 selection of cell according to OCV (mV) variance for different cell after full 

charge from continuous charge test (CCT) and as per Fig. 4.7 selection of cell 

according to OCV (mV) variance for different cell after full discharge (CDT). In 

selecting cells based on capacity from CCT or CDT data, a systematic approach is 

followed. Initially, data from CCT or CDT experiments is collected, wherein 

batteries undergo continuous charging or discharging at a constant rate. 

Subsequently, the capacity of each cell is calculated based on the obtained charge 

or discharge profiles, typically measured in ampere-hours (Ah) or watt-hours (Wh). 

These cells are then sorted according to their capacities, allowing for the 

identification of cells with similar capacity levels. Finally, selected cells meet the 

quality standards to ensure reliability and consistency in battery performance. 
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Fig. 4. 5  Selection of cell according to capacity from CCT/ CDT.  

 

 Fig. 4.6  Selection of cell according to OCV (mV) variance for different 

cells after CCT. 

 

Fig. 4.7  Selection of cells according to OCV (mV) variance for different 

cells after CDT. 

The whole process of aging as per the experimental plan is presented in Fig. 4.8 

and in conducting cycle life tests for NMC cells using CCT/CDT methods an 
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experimental approach is essential. After preparing the cells and setting up the 

experimental environment with precise instrumentation, the test protocol is defined, 

specifying parameters such as charging/discharging rates, cut-off voltages, and 

cycling conditions. Throughout the test, data on voltage, current, temperature, and 

time are meticulously recorded and analyzed to assess key performance indicators 

like capacity retention and voltage fade.  

 

Fig. 4.8  Experimental methodology for NMC cell cycle life test 

(CCT/CDT). 

The equivalent full cycles (EFC), which represent a cell's total charge throughput, 

are utilized to analyze the real SOH of the cells. One EFC is equal to one full charge 

and one full discharge over the cell's rated capacity multiplied by two and as per 

the rain flow method [2] and it is presented through equation 15. 

EFC= 
1

2
[∫ 𝐼𝑐𝑦𝑐𝑙𝑒.dt]/Cnom       (15) 

In this rain flow method employed, half-cycles are tallied exclusively after the data 

and in this study, as each cell charging and discharging dataset attains a maximum 

value of 100% during analysis, the half-charge and discharge cycles are 

independently incremented. The determination of an equivalent full cycle involves 

calculating the average battery charge and discharge cycles over a specified period. 

This approach allows the estimation of the number of full equivalent cycles during 

the analysis rather than waiting until the conclusion of the dataset. Consequently, 
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calculating the remaining useful life between load points becomes a straightforward 

process. 

 

Fig. 4.9  Flowchart for SOH model development.  

4.5.4 CELL CAPACITY MEASUREMENT 

Capacity is the most important aspect, and its measurement is performed on a fully 

charged cell in two steps: constant current charging at 0.5C with upper cutoff 

voltage at 4.2 V with limiting current and temperature is always kept at 25℃. After 

a 15-minute rest period, the cell is discharged at 1C or 2C (as the case may be) to 

the end-of-discharge voltage (2.5V) at different temperatures maintained at 

15℃, 25℃ & 35℃. For ML-based model development and analysis, all three 

capacity measurements are performed, and the third discharging capacity 

measurement is used in the validation analysis. Raw data is directly fetched from 

the computer system, and it comprises following parameters- 
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This set of parameters is used to describe the performance and characteristics of a 

battery during a cycle test. Cycle_Index is a unique identifier for each test cycle 

performed on the battery. It helps in tracking and differentiating multiple test 

cycles. Start_Time is the timestamp when the battery test cycle begins. This marks 

the start of data collection for the cycle. End_Time is the timestamp when the 

battery test cycle concludes. This marks the end of data collection for the cycle. 

Test_Time (s) is the total duration of the test cycle, measured in seconds. It is 

calculated as the difference between the End_Time and Start_Time. Min_Current 

(A) is the minimum current measured during the test cycle, expressed in amperes 

(A). This represents the lowest current drawn from or supplied to the battery during 

the test. Max_Current (A) is the maximum current measured during the test cycle, 

expressed in amperes (A). This indicates the highest current drawn from or supplied 

to the battery during the test. Min_Voltage (V) is the minimum voltage recorded 

during the test cycle, expressed in volts (V). It represents the lowest voltage the 

battery reached during the test. Max_Voltage (V) is the maximum voltage recorded 

during the test cycle, expressed in volts (V). It shows the highest voltage the battery 

reached during the test. Charge_Capacity (Ah) is the total amount of charge the 

battery can store during the charging phase of the cycle, measured in ampere-hours 

(Ah). It indicates the battery's capacity to hold energy. Discharge_Capacity (Ah) is 

the total amount of charge the battery delivers during the discharging phase of the 

cycle, measured in ampere-hours (Ah). It shows how much energy the battery can 



81 
 

provide. Capacity Loss (Ah) is the difference between the Charge_Capacity and 

Discharge_Capacity, measured in ampere-hours (Ah). This value represents the 

loss of capacity during the test cycle, which can indicate battery degradation. 

Charge_Energy (Wh) is the total amount of energy supplied to the battery during 

the charging phase, measured in watt-hours (Wh). It reflects the energy input into 

the battery. Discharge_Energy (Wh) is the total amount of energy delivered by the 

battery during the discharging phase, measured in watt-hours (Wh). It represents 

the energy output from the battery. Energy Loss (Wh) is the difference between 

Charge_Energy and Discharge_Energy, measured in watt-hours (Wh). This value 

indicates the energy lost during the cycle, which can be due to inefficiencies such 

as internal resistance or heat. These parameters provide a comprehensive overview 

of the battery's performance and efficiency during a test cycle, helping to assess its 

health, capacity, and energy efficiency.  

This experiment concentrates on cycle index, Charge_Capacity (Ah)and 

Discharge_Capacity (Ah) only. consecutive charge/ discharge of cell and to 

investigate the capacity evolution over the lifetime, different operational stress 

factors (1C, 2C), and environmental stress factors (15℃, 25℃, and 35℃) were 

investigated. For a better comparison, all values were normalized using a reference 

value measured at the beginning of life under the respective test conditions. The 

flowchart for the development of a model for SOH is shown in Fig. 4.9. 

Uncertainty regression analysis has been carried out for different cells, working 

under different operating parameters. Table 4.2 provided summarizes the 

regression analysis results for the NMC battery under various cycling conditions 

across different temperatures (15°C, 25°C, and 35°C). The metrics include R Square, 

Adjusted R Square, and P-value, which are key indicators in evaluating the model's 

performance and statistical significance. The calculation steps of uncertainty in 

results have been presented in Appendix 2. 
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Table 4.2 Regression analysis for cells used in SOH experimentation. 
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R Square 6.23E-01 6.32E-01 2.04E-01 1.67E-01 1.70E-01 1.53E-01 

Adjusted R 

Square 6.22E-01 6.31E-01 2.02E-01 1.66E-01 1.69E-01 1.51E-01 

P-value 4.33E-110 1.04E-112 1.88E-27 5.26E-33 1.21E-33 5.15E-30 

 

It is observed that for the 15°C cycling conditions, the R² values are approximately 

0.62-0.63, indicating that around 62-63% of the variance in the battery's 

performance which suggests a moderately strong relationship between the cycling 

conditions and battery performance. For the 25°C and 35°C conditions, the R² 

values are significantly lower (ranging from 0.15 to 0.20), indicating that the model 

explains only 15-20% of the variance, which indicates relative weaker relationship 

under these conditions, implying that other unaccounted factors may influence 

battery performance more heavily at these temperatures. The Adjusted R² values 

are very close to the R² values for all conditions, indicating that the number of 

predictors has little impact on the overall explanatory power of the model. This 

stability suggests that the model's complexity is appropriate and not overly reliant 

on the number of predictors. The p-values for all conditions are extremely small 

(e.g., 4.33E-110, 1.04E-112), far below the conventional significance level of 0.05. 

This indicates that the results are statistically significant, meaning there is a very 

low probability that the observed relationships occurred by chance. Thus, the 

regression models can be considered reliable for understanding the relationships 

between cycling conditions and battery performance. The regression analysis 

reveals that the models for the 15°C conditions are more robust in explaining the 

variance in battery performance compared to the 25°C and 35°C conditions. The 
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consistently low p-values across all conditions confirm the statistical significance 

of the models. However, the lower R² values at higher temperatures suggest the 

need to consider additional factors that might affect battery performance under 

those conditions. 

The uncertainty analysis of experimental data has been carried out on the basis of  

[259], who developed a practical approach to conducting uncertainty analysis 

using Excel macros and highlighted the importance of uncertainty analysis in 

engineering and scientific research, where accurately quantifying uncertainties is 

crucial for reliable data interpretation. Table 4.3 lists the different calculations for 

measurement uncertainty of experimental data. 

Table 4.3 Calculating measurement uncertainty of experimental data.  

Readings 
DC Voltage  

V 

Ampere 

I 

Temperature 

℃ 

1 3.21 1.25 28.00 

2 3.21 1.25 28.10 

3 3.22 1.25 28.00 

4 3.20 1.24 28.05 

5 3.20 1.25 28.10 

6 3.21 1.24 28.00 

7 3.20 1.25 28.00 

8 3.21 1.25 28.15 

9 3.21 1.24 28.00 

10 3.20 1.24 28.10 

11 3.20 1.25 28.10 

12 3.21 1.22 28.00 

Calculation uncertainty analysis of experimental data  

Average 3.21 1.24 28.05 

Number of measurements 12 12 12 
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DOF (n-1) of average 11 11 11 

Standard Deviation 6.51E-03 9.00E-03 5.64E-02 

Random Uncertainty 1.88E-03 2.60E-03 1.63E-02 

Readability 0.01 0.01 0.01 

Synthetic Uncertainty 5.77E-03 5.77E-03 5.77E-03 

Combined Uncertainty 8.75E-02 9.15E-02 1.49E-01 

Expanded Uncertainty 

[from calibration report] 
1.90E-05 4.00E-04 3.40E-04 

 

The data comprises twelve readings for each parameter, followed by a calculation 

section that aggregates these readings to assess the uncertainty. The average values 

are 3.21 for Voltage, 1.24 for Ampere, and 28.05 for Temperature, calculated across 

the twelve measurements. The standard deviations for these parameters—0.00651 

for Voltage, 0.00900 for Ampere, and 0.0564 for Temperature—reflect the 

dispersion of the data around the mean, with the Temperature showing the highest 

variability. Key contributors to measurement uncertainty include random 

uncertainty, synthetic uncertainty, and the instrument’s readability, with a 

combined uncertainty calculated for each parameter. The expanded uncertainty, 

derived from the calibration report, is also provided, highlighting the importance of 

calibration in minimizing overall uncertainty. The calculation of combined 

uncertainty, which encompasses various error sources, ensures that the final 

measurement is not just a single value but a range within which the true value is 

likely to lie, thereby enhancing the robustness and credibility of the results. 

The expanded uncertainty, derived from the calibration report as per Appendix 2, 

provides a more comprehensive view by incorporating a coverage factor (typically 

to achieve a confidence level, often 95%). The Voltage measurement has a very 

low expanded uncertainty of 1.90E-05, indicating a high level of confidence in the 

calibration of the instrument used for this measurement. The expanded uncertainty 

for Ampere and Temperature are 4.00E-04 and 3.40E-04, respectively, reflecting 
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slightly higher but still low levels of uncertainty compared to the combined 

uncertainty.  

Further to the results arrived on capacity, the process of consolidated ML model 

development method is followed as per the flowchart as shown below Fig. 4.10. In 

the process of developing ML models, a streamlined approach involves several key 

stages that involve collecting and preprocessing data, ensuring its quality and 

suitability for analysis. Appropriate models (SVR, DT, KNN, and RF) are selected 

based on the problem and data characteristics, followed by training and 

optimization. Model performance is then evaluated using testing data, and if 

satisfactory, the model is deployed into production. This consolidated flow enables 

the development of robust and efficient machine-learning solutions tailored to 

specific needs. 

 

Fig. 4.10  Consolidated common ML model development algorithm 

flowchart. 
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4.5.5 CELL CYCLE AGING PROTOCOL FOR SOH ESTIMATION 

Cell cycle aging protocol covers several steps, as cells were placed in thermal 

chambers to adjust to the desired cycling temperatures. This is important because 

the performance of batteries can vary depending on temperature. After this step, the 

cells were discharged to 0% SOC before the start of each round of cycling. This is 

to ensure that the cells are starting from a consistent SOC. The capacity of the cells 

was checked after each round of cycling. This is done by performing three 

charge/discharge cycles from 0% to 100% SOC at a current of 0.5C. The capacity 

check allows us to track the degradation of the cells over time. The cells were cycled 

at the designated conditions for that cell. The conditions could vary depending on 

the cell type, the desired cycling profile, and the goals of the study. The capacity of 

the cells was checked again at the end of each round of cycling. This allows us to 

compare the capacity of the cells before and after cycling. Every cell in the study 

underwent an identical capacity assessment procedure. This ensures that the results 

are comparable between cells. This ensures that the results are comparable between 

cells. The test matrix for experiments is detailed in Table 4.4. 

Table 4.4 Test matrix for NMC cell. 

DOD, Temperature, Discharge Rate 

0%–100%, 15℃, 1C 0%–100%, 15℃, 2C 

0%–100%, 25℃, 1C 0%–100%, 25℃, 2C 

0%–100%, 35℃, 1C 0%–100%, 35℃, 2C 
  

4.5.6 CELL CAPACITY FADING ANALYSIS  

In addition to the cell manufacturing process which causes cell-level inconsistency, 

the assembly techniques for modules and packs are equally crucial for ensuring 

consistency which widens with aging and in operation. For efficient management 

of the battery through BMS, the inconsistency must be low at any point of operation 

and any point of age. The fading inconsistency of individual cells is an important 
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aspect of making a good battery pack. The equivalent full cycles (EFC) capacity 

graph for Fareast makes cells no 1, 2, 3, and 4 and it is represented through Fig. 

4.11. It is evident that significant capacity increases up to the first hundred cycles 

and gradually starts depleting in a nonlinear manner.  

 

 

 

 

Fig. 4.11  Equivalent full cycles capacity graph for Fareast make cell no 1, 2, 

3, and 4. 
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Figure 4.12 illustrating the percentage loss in capacity over electric field control 

capacity for Fareast make cells 1, 2, 3, and 4 provide valuable insights into the 

relative performance and degradation of each cell. By plotting the calculated 

percentage loss values against the respective cell numbers, the graph enables quick 

comparison and analysis of capacity loss trends across the cells. This information 

is essential for identifying potential issues, optimizing maintenance strategies, and 

ensuring efficient management of battery performance and longevity.  
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Fig. 4.12  Percentage loss in capacity over EFC capacity graph for Fareast 

make cell no 1, 2, 3, 4. 

4.6 SOC EXPERIMENTATION AND CELL SELECTION  

The primary objective of LIBs testing is to ensure proper function and safety in any 

environment by creating similar environmental conditions in which these batteries 

will operate. Several series of tests are according to industry standards from UL, 

SAE, IEC, and others with specific objectives including capacity checking and 

degradation, thermal abuse, heat resistance, temperature cycling, and short-

circuiting under heat.  

4.6.1 CELL AND BATTERY CAPACITY MEASUREMENT  

Cell and battery packs either at individual cell level or entire battery pack level are 

undergoing the testing process. The process allows researchers to understand how 

individual cells degrade and how that translates to the overall performance of the 

battery pack. EFC is a standardized unit used to represent the cumulative wear and 

tear of a battery pack and EFC represents a complete discharge and recharge cycle 

of the battery. Fig. 4.13 shows the capacity loss compared to the initial capacity 

after a certain number of EFC and cell and battery packs are being tested as per 

details.  

  

Fig. 4.13  (a) Cell and battery aging plan (b) schedule of LFP cell aging. 
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A complete schematic of an LFP battery pack experimental setup resembles a 

controlled environment for testing the battery's performance and characteristics. 

LFP battery pack comprises multiple lithium iron cells configured in series or 

parallel to achieve the desired voltage and capacity. A DC power source acts as a 

conductor, providing controlled voltage or current to the pack, simulating charging, 

discharging, or other operating conditions. The experimental setup covers a battery 

tester unit, host computer, software unit, data logger, and developed battery pack. 

The complete test setup is presented in Fig. 4.14, and it comprises of BK-3080 E/60 

cycler equipped with proprietary software for test process programming, and a 

primary computer attached with transmission control protocol/internet protocol. 

With sixty-four separate channels, the BK-3080 E/60 can independently charge or 

discharge up to sixty-four cells based on the intended profile. The system can 

achieve a maximum voltage of 5 V and a maximum current of 100 A across 

multiple ranges from 1 A to 100 A. The current and voltage sensors exhibit 

measurement inaccuracies of less than 0.1%.  

 

Fig. 4.14  Complete schematic of LFP battery pack experimental setup. 

The BK-3080 E/60 Cycler was used to conduct individual testing of these cells. 

Table 4.5 depicts the test schedules devised to produce varied stimuli for these 

twenty cells. This study concentrates on the datasets obtained at 25℃ and a specific 
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stage of aging. At first, all cell discharge data were sorted for the first 0.18 minutes 

and documented for sorting for accepted/ rejected criteria.   

Table 4.5 Individual LFP cell test plan. 

Description Details 

Input voltage AC200V~265V, 50Hz 

Max DC battery Voltage range 5V 

Min DC battery Voltage range 2V 

Charging Current 43A 

Discharging current 43A 

 

4.6.2 CELL AND BATTERY PACK SPECIFICATION 

In the investigation process, the experiments were carried out as per the plan for 

the LFP prismatic cell, a total of 20 fresh sample cells of the same batch, make and 

model were selected for experimentation and were marked as serial numbers 1 to 

20. The vital characteristics of the cell were retrieved from manufacturer datasets 

and important parameters are listed in Table 4.6. An LFP cell is safe, has a long 

cycle life, and high-power density. It utilizes lithium iron phosphate as the cathode 

material, which provides excellent thermal stability and reduces the risk of thermal 

runaway. Proper thermal management is essential to optimize their performance 

and ensure longevity. 

Table 4.6 Detail description of LFP cell. 

Description Details Photograph 

Manufacturer  Ganfung LiEnergy Part no: 

48174133-086Ah 

 

Typical capacity 86.0Ah at C1 discharge rating 

Operating voltage 2.50V~3.65V [0℃＜T≤60℃] 

2.00V~3.65V [-20℃≤T≤0℃] 

Impedance (1KHz) ≤0.40mΩ 

Operating temperature 0~60℃ 

Weight ≤2.30Kg 

Standard charge current C/2 at 25±2℃ upto 3.65V 

Self-discharge ≤3.5%/month at 25±2℃ 
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Month of manufacturing  12/2022 

All cells were put on initial constant current- constant voltage (CC-CV) charging 

at C/2 rate as per details of BK3080E/60 and technical specification along with a 

description of LFP aging machine are presented in Table 4.7. After fully charging 

and resting as per the charging plan, the cells were put into constant discharging at 

a C/2 rate. At the time scale, response voltage against charging and discharging 

current was measured through the host computer and recorded on a .CSV file. 

Table 4.7 Description of LFP aging machine. 

Description Details 

Input voltage AC200V~265V, 50Hz 

DC cell Voltage measurement range 0-5V 

Charging Current 0-100A 

Discharging current 0-100A 

Data transmission via RS232 port or network 

Measurement Capacity 64 cells 

4.7 ASSEMBLY OF BATTERY PACK 

Within the realm of e-mobility, the vulnerability of LIBs to diverse environmental 

stressors such as thermal runaway, vibrations, and impacts from vehicle collisions 

poses a considerable risk to their overall integrity. This heightened sensitivity arises 

from the LIB responsiveness to ambient temperature fluctuations, external pressure 

variations, and dynamic mechanical loads. In the complex landscape of EVs, the 

safety and reliability of LIBs emerge as paramount concerns. These challenges 

constitute significant hurdles that must be surmounted for the widespread 

electrification of both public and private transportation sectors. The potential for 

failures induced by thermal runaways, vibrational forces, or impacts underscores 

the critical importance of addressing safety and reliability issues to ensure the 

successful and secure integration of electric vehicles into mainstream transportation 

infrastructure. Tackling these challenges head-on is essential for instilling 

confidence in technology and facilitating the large-scale adoption of e-mobility. 
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Accordingly, the LFP 51.2V86Ah (16S1P) Battery pack design & development of 

its BOM for the development of the experiment sample are carried out.   

A resilient and dependable battery packaging design requires a comprehensive 

approach to tackle various design considerations, particularly focusing on thermal 

runaway, vibration isolation, and crash safety both at the individual cell level and 

within the modular structure. Addressing these critical issues is essential to ensure 

the integrity and functionality of the battery system. At the cell level, careful 

attention must be given to preventing thermal runaway events, as they can have 

detrimental effects on the overall performance and safety of the battery. The design 

should incorporate measures to manage and dissipate heat effectively, safeguarding 

against potential thermal issues. Additionally, vibration isolation measures are 

crucial to minimize the impact of external vibrations on the battery cells.  

One common thread across these levels is the need to restrict relative motion 

between cells. This is vital to eliminate any potential points of failure within the 

battery pack. By minimizing movement between cells, the risk of mechanical stress, 

thermal inconsistencies, and other potential issues is mitigated, contributing to the 

overall robustness and reliability of the battery packaging design. In summary, a 

well-thought-out battery packaging design should holistically address thermal 

management, vibration isolation, and crash safety considerations at both the cell 

and modular levels, emphasizing the importance of restricting relative motion to 

enhance the overall reliability and durability of the battery system. Fig. 4.15 

illustrates the LFP battery pack actual view with top cover opened and pack 

assembly for e-mobility. 
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Fig. 4.15  LFP battery pack actual view (a) battery pack with top cover 

opened, (b) battery pack ready for assembly with e-mobility. 

4.8 BATTERY MANAGEMENT SYSTEM 

A battery management system (BMS) serves as a crucial control unit designed to 

ensure the safe and efficient operation of a battery pack [2,3,4]. Its core function 

revolves around safeguarding the battery, with a primary focus on addressing safety 

concerns, managing cell balancing, and mitigating aging-related issues. The 

indispensable supervision of each cell is a critical aspect, driven by safety 

considerations and the need for optimal performance. Furthermore, the BMS plays 

a pivotal role in implementing preset corrective measures to address any abnormal 

conditions within the system infrastructure. This proactive approach not only 

enhances the overall safety of the battery pack but also contributes to its longevity 

and reliability. Beyond safety considerations, the BMS is also responsible for 

regulating the system temperature. Recognizing the significant impact of 

temperature on the power consumption profile, the BMS ensures the 

implementation of proper procedures to control and maintain the system 

temperature within optimal ranges. This multifaceted role underscores the BMS's 

comprehensive contribution to the overall health, safety, and performance of Li-ion 

battery systems. Looking at these aspects, the BMS (Model: JBD-SP25S003-L23S-

80A-B-U) for LFP battery is used in the battery pack having the following 

specifications in Table 4.8. 
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Table 4.8 Specification of digital BMS. 

Description  Parameter 

Cell compatibility LiFePO4 

Cell in series 13-25 

Operating voltage 32.50- 86.25V 

Operating current limit 100Amp 

Cell charge protection 3.75VPC 

Cell discharge protection  2.50VPC 

Cell equalizing function 3.40VPC 

Cell discharge protection 2.50VPC 

Battery pack overcurrent protection  90V 

Battery pack temperature operating range -15-70℃ 

Battery pack short circuit protection 100A 

RS485 & UART functionality Yes 

Charger type CC-CV 

Charging current 40A 

 

4.9 MEASUREMENT OF CAPACITY AND CELL SELECTION 

Batteries are created by connecting various cells in parallel or series arrangements. 

The requirement for stable batteries in electric vehicles cannot be met by the 

voltage, current, and capacity/energy levels of individual cells. Every cell has 

unique properties that set it apart from other comparable cells. These differences 

are amplified in battery packs that contain linked cells. Therefore, changes in 

battery performance degradation would be made worse by differences in cell state. 

Accordingly, individual LFP cells were capacity graded as per details and the 

measurement of values are as given in Table 4.9.   

Table 4.9 Individual LFP cell test results and selection. 

Final cell selection according to BMS setting (43A discharge) 

Cell 

no. 

V
OC 

 

(mV) at 

0.00 Min 

V
OC 

 

(mV) at 

0.18 Min 

% 

variance 

Total 

Dis
time 

(minutes) 

V
EC 

 

(mili V) 

Dis
current 

 

(milli A) 
Remark 

1 3601.40 3327.40 7.61% 129.75 2500.00 

-4
3
0
0
0
.0

0
 

Reject 

2 3363.80 3260.60 3.07% 128.50 2500.00 Accept 

3 3334.20 3255.20 2.37% 127.93 2499.60 Accept 

4 3405.40 3278.70 3.72% 128.62 2499.50 Accept 
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5 3472.30 3288.70 5.29% 128.58 2498.90 Accept 

6 3371.80 3258.80 3.35% 129.33 2498.60 Accept 

7 3411.60 3266.10 4.26% 128.32 2498.50 Accept 

8 3367.30 3254.00 3.36% 129.57 2499.70 Accept 

9 3583.70 3311.80 7.59% 130.90 2499.20 Accept 

10 3331.00 3247.70 2.50% 128.37 2498.90 Accept 

11 3423.80 3267.30 4.57% 130.17 2499.10 Accept 

12 3646.40 3327.20 8.75% 129.78 2499.10 Reject 

13 3432.90 3277.00 4.54% 129.13 2498.60 Accept 

14 3628.50 3325.80 8.34% 127.77 2499.80 Reject 

15 3590.30 3311.60 7.76% 129.32 2499.20 Reject 

16 3332.90 3253.40 2.39% 127.37 2500.00 Accept 

17 3583.70 3306.10 7.75% 130.10 2499.40 Accept 

18 3441.90 3271.20 4.96% 130.22 2499.60 Accept 

19 3405.50 3267.70 4.05% 130.95 2499.80 Accept 

20 3561.30 3302.40 7.27% 129.82 2499.90 Accept 
 

It is the battery operating environment that disperses variances in cell performance 

degradation to individual cells, and variations in cell performance degradation led 

to supply chain interactions. Since a non-uniform feature would result in a variation 

in the battery state, it is challenging to completely ensure the uniformity of the 

initial performance characteristics as well as the extrinsic or intrinsic process 

conditions of battery packs. Accordingly, cell numbers marked as 2-11, 13, 16-20 

are selected for making battery packs. This assembled battery pack is put on a 

charging/ discharging cycle at the NEWARE battery pack testing machine, which 

is capable of undertaking up to 100V and 50A charging/ discharging. The battery 

pack was put into the charging (C/2) and discharging (C/2) test as per the details 

given in Table 4.10.  

Table 4.10 Individual LFP battery pack test plan. 

Description Details 

Input voltage AC200V~265V, 50Hz 

Max DC battery Voltage range 60V 

Min DC battery Voltage range 40V 

Charging Current 43A 

Discharging current 43A 
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The test plan for an individual LFP battery pack involves defining objectives, 

specifying test conditions, ensuring safety measures, setting up equipment, 

conducting performance and safety tests, analyzing data, and preparing a 

comprehensive report. Performance tests assess capacity, energy efficiency, and 

cycle life, while safety tests evaluate responses to adverse conditions. The results 

inform design decisions, ensure compliance, and enhance product quality and 

reliability. Data on charging and discharging are stored in a PC hard drive for 

further analysis. The battery pack full cycle recipe (charge- rest-discharge- rest- 

charge) is as per Table 4.11.  

Table 4.11 Battery pack single cycle aging log. 

Step 

number 

Step 

type 
Step time Onset date End date 

Capacity 

(Ah) 

1 CC 

Chg 

00:56:28 2023-02-23 

15:14:50 

2023-02-23 

16:11:19 

28.2356 

2 Rest 00:05:00 2023-02-23 

16:11:19 

2023-02-23 

16:16:19 

0.0000 

3 CV 

Chg 

00:01:14 2023-02-23 

16:16:19 

2023-02-23 

16:17:33 

0.6175 

4 Rest 00:60:00 2023-02-23 

16:17:33 

2023-02-23 

17:17:33 

0.0000 

5 CC 

DChg 

02:02:19 2023-02-23 

17:17:33 

2023-02-23 

19:19:52 

91.9270 

6 Rest 00:15:00 2023-02-23 

19:19:52 

2023-02-23 

19:34:52 

0.0000 

7 CC 

Chg 

01:00:00 2023-02-23 

19:34:52 

2023-02-23 

20:34:52 

49.9993 

 

4.10  CHAPTER SUMMARY 

 

The integration of ML modeling in the domain of LIB, particularly in the context 

of e-mobility, marks a significant advancement. This integration is rooted in the 

historical development of MLs, and its pivotal role is highlighted across various 

scientific and technological domains. ML-based modeling serves the purpose of 

simulating continuum-scale behavior by incorporating information from 
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computational models at finer scales. ML methods are extensively employed to 

characterize various aspects of LIB, including performance, lifetime, reliability, 

and safety. A range of ML categories, such as supervised, unsupervised, semi-

supervised, and reinforcement learning, along with specific methods like SVM, 

RVM, LSTM, GPR, and DL, are applied for data-driven approaches. The 

challenges in LIB especially within the context of e-mobility, are outlined, which 

include variables related to performance, lifespan, safety, cost, environmental 

impact, and resource management. ML emerges as a valuable tool in addressing the 

trial-and-error approach prevalent in LIB research, offering a data-driven 

alternative for predicting battery component properties. The chapter also 

emphasizes the necessity of battery aging data for ML methods and addresses 

challenges in bridging the gap between laboratory and practical applications. 

Performance metrics, including MAE, MSE, RMSE, and MAPE, are proposed to 

be utilized for evaluating the accuracy of ML models in predicting different states 

of LIBs.  

The chapter emphasizes the continuous need for improvement in ML-based state 

estimation methods, considering factors like computational cost and real-world 

applicability. This chapter provides an in-depth examination of experimental 

procedures and outcomes related to SOH and SOC estimation in batteries. It 

encompasses a meticulous investigation into various cell types, specifically NMC 

and LFP cells, focusing on estimating their capacities through diverse protocols. 

Additionally, it delves into the intricacies of cell selection, matching, and grading 

processes, elucidating the methodologies employed for battery pack assembly in 

detail. Moreover, the chapter offers a thorough analysis of the phenomenon of cell 

fading, emphasizing its significance in the context of SOH estimation. By 

elucidating the mechanisms underlying cell degradation over time, the narrative 

underscores the necessity of factoring in such degradation phenomena when 

assessing the health of battery cells. Furthermore, the chapter presents a specialized 

investigation into SOC estimation, utilizing a battery pack comprising LFP 
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prismatic cells. This segment encompasses an exhaustive exploration and 

experimentation regarding capacity estimation methodologies, alongside an 

assessment of cell matching to ensure optimal performance in the construction of a 

robust battery pack. Additionally, the chapter discusses the implementation of a 

battery management system to monitor and regulate the SOC of the battery pack 

effectively. 
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CHAPTER 5    

RESULTS AND DISCUSSIONS 

5.1  CHAPTER OVERVIEW 

For the estimation of the state of health of NMC cylindrical cells, we propose the 

implementation of three simplistic, data-driven modeling techniques and unique 

estimation methodologies. This novel estimation method utilizes both the charge 

and discharge capacities employs multiple ambient temperatures with two distinct 

discharging cycles for data analysis and reports the model’s performance on four 

error techniques. The validity of the results is further corroborated through the 

results of cells from various manufacturers having the same electrochemical 

composition, to ensure the generalizability of the outcomes. For the estimation of 

the state of charge of LFP prismatic cells and battery packs, we propose the 

implementation of simplistic, data-driven modeling techniques utilizing linear 

regression algorithms. This approach encompasses the selection of appropriate LFP 

cells, the assembly of battery packs, and the undertaking of experimental and 

analytical work. We aim to contribute meaningful insights that will guide both 

commercial technology strategies and academic research initiatives, promoting 

progress in data-driven state estimation methodologies of both NMC and LFP cell 

chemistries for SOH and SOC estimation for e-mobility applications. 

5.2  STATE OF HEALTH ESTIMATION 

In the context of SOH estimation, DT, KNN, and RF algorithms were utilized for 

estimating and predicting the performance of LIB, highlighting the model’s 

performance on MAPE, RMSE, MSE, and MAE. The experimental setup is 

designed to conduct an extensive analysis, encompassing the thorough 

characterization of multiple discharge cycles at both 1C and 2C rates, along with a 
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meticulously controlled 0.5C charging process. A noteworthy aspect of this 

experimentation is the variation of temperature conditions, 15℃, 25℃, and 35℃, 

to comprehensively assess the battery performance under different operational and 

thermal stresses.  

The primary focus during this experimentation lies in scrutinizing key parameters, 

with a particular emphasis on the discharge capacity and charge capacity. By 

subjecting the LIBs to diverse discharge rates and temperature environments, the 

research aims to gain a nuanced understanding of how these factors influence the 

overall performance and durability of the batteries. This approach enhances the 

robustness and reliability of the findings, providing valuable insights into the 

intricate dynamics of LIB behavior under varying operational conditions. For data 

analytics, a rigorous approach is employed, where 80% of the acquired data is 

dedicated to training the analytical models, while the remaining 20% is reserved 

for robust testing and validation. It's crucial to emphasize that the entire dataset, 

encompassing full capacity values, is utilized in each case. This approach ensures 

a comprehensive and representative dataset, enhancing the reliability and 

applicability of the ensuing analytics. The general flowchart of experiments with 

ultimate research goals is given in Fig. 5.1. 

 

Fig. 5.1  Experiment plan cell and battery. 
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By systematically examining discharge and charge capacities across different 

temperatures and employing a meticulous division of data for training and testing, 

this experimental design aims to yield insights that can contribute to a nuanced 

understanding of battery performance under diverse conditions. This approach not 

only bolsters the accuracy of the data-driven models but also enhances their 

generalizability and utility across various operational scenarios. Experimental 

verification in an ML algorithm refers to the process of testing the performance of 

an ML model on a specific dataset or task. In this process, the dataset is divided 

into training and testing sets, the model is trained on the training set, and its 

performance is assessed on the testing set [260]. The DT, KNN, and RF algorithm 

helps to determine the system performance generate new unseen data, and provide 

insights into areas where the system needs improvement [261]. Additionally, 

experimental verification involves comparing the performance of different models 

to identify the best approach for a given task. Table 5.1 lists different test metrics 

for lithium-ion cell ‘a’ and cell ‘b’ with different charge and discharge rates at 1C 

and 2C for DOD of 0-100% at a different temperature range of 15℃, 25℃, and 

35℃.  

Table 5.1 Test matrix for lithium-ion cell ‘a’ and cell ‘b’ with different 

charges and discharge rates. 

DOD Temperature Discharge 

rate 

Charging 

rate 

Charge 

capacity 

Discharge 

capacity 

0%–100% 15°C 1C & 2C 0.5C Cell ‘a’ and 

‘b’ 

Cell ‘a’ and ‘b’ 

0%–100% 25°C 1C & 2C 0.5C Cell ‘a’ and 

‘b’ 

Cell ‘a’ and ‘b’ 

0%–100% 35°C 1C & 2C 0.5C Cell ‘a’ and 

‘b’ 

Cell ‘a’ and ‘b’ 

 

The modeling is executed with Google Colaboratory programming which allows 

writing and executing Python code. This is a cloud-based platform that provides 

free access to graphics processing units and tensor processing units for running 
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Python code. In the experiment, the aging data of cell ‘a’ is used to validate the 

generalization and accuracy of the model through DT, KNN, and RF algorithms. 

First, 80% of the data is used for training, and the remaining 20% are utilized to 

assess the model's fundamental functionality. The model is next evaluated using all 

the data in cell 'b' to determine its generalizability and robustness. At last, the model 

is utilized to estimate SOH at various temperatures to further confirm its 

effectiveness. 

5.2.1  HEALTH ESTIMATION THROUGH CHARGE CAPACITY  

Figures 5.2 (a) and 5.2 (b) illustrate the expected against actual charge capacity 

health estimation using the decision tree algorithm for cells ‘a’ and ‘b’ at 15℃ for 

a discharge rate of 1C and 2C along with LIBs cycle index. Charge capacity health 

prediction of LIB involves measuring the battery's capability to store and deliver 

power over time and assessing its remaining capacity relative to its original 

capacity. Using the decision tree algorithm, the charge capacity of the lithium-ion 

cell exhibits 2.8 Ah at the beginning of the cycle index and falls to 2.0 Ah after 400 

cycles at 1C and 2C discharge rates. Cell ‘b’ exhibits similar characteristics but at 

2C discharge rate predicted and actual behavior are identical whereas at 1C minor 

deviation is observed.  

 

Fig. 5.2  Predicted versus actual charge capacity health estimation using 

decision tree algorithm for cells ‘a’ and ‘b’ at 15℃ for (a) 1C discharge rate and 

(b) 2C discharge rate with cycle index.  

a) b)
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Figures 5.3 (a) and 5.3 (b) illustrate the expected against actual charge capacity 

health estimation using the decision tree algorithm for cells ‘a’ and ‘b’ at 25℃ for 

a discharge rate of 1C and 2C along with LIBs cycle index. Using the DT algorithm, 

the charge capacity of the lithium-ion cell exhibits 3.0 Ah at the beginning of the 

cycle index and falls to 2.35 Ah after 530 cycles at 1C and 2C discharge rate cell 

exhibit 3.0 Ah at the beginning of the cycle index and falls to 2.2 Ah after 650 

cycles at 25℃. This is typically done by measuring the battery's voltage and current 

output during charge and discharge rate and analyzing the data using mathematical 

models to estimate the battery's SOH. Accurate SOH prediction of LIB is an 

important attribute for ensuring the dependable and secure operation of the system, 

as well as optimizing battery performance and minimizing costs associated with 

battery replacement.  

 

Fig. 5.3  Predicted versus actual charge capacity health estimation using 

decision tree algorithm for cells ‘a’ and ‘b’ at 25℃ for (a) 1C discharge rate and 

(b) 2C discharge rate with cycle index.  

Figures 5.4 (a) and 5.4 (b) illustrate the predicted against actual charge capacity 

health estimation using the decision tree algorithm for cells ‘a’ and ‘b’ at 35℃ for 

a discharge rate of 1C and 2C along with LIBs cycle index. Using the DT algorithm, 

the charge capacity of the lithium-ion cell exhibits 3.0 Ah at the beginning of the 

cycle index and falls to 2.4 Ah after 800 cycles at 1C, and at 2C discharge rate cell 

exhibits 3.0 Ah at the beginning of the cycle index and falls to 2.2 Ah after 800 

a) b)
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cycles at 35°C. Cell ‘b’ exhibits wide variation against predicted and actual 

behavior at 2C discharge rate whereas identical behavior at 1C is observed. 

 

Fig. 5.4  Predicted versus actual charge capacity health estimation using 

decision tree algorithm for cells ‘a’ and ‘b’ at 35℃ for a) 1C discharge rate and b) 

2C discharge rate with cycle index.  

Figures 5.5 (a) and 5.5 (b) illustrate the predicted against actual charge capacity 

health estimation using the K-nearest neighbor algorithm for cells ‘a’ and ‘b’ at 

15℃ for a discharge rate of 1C and 2C along with LIBs cycle index. This is done 

by measuring the battery's voltage and current output during charge cycles and 

analyzing the data using mathematical models to estimate the battery's SOH. 

Accurate estimation of battery SOH ensures the safe and reliable operation of 

battery-powered systems, as well as optimizing battery performance and 

minimizing costs associated with battery replacement. Using the KNN algorithm, 

the charge capacity of the lithium-ion cell exhibits 2.7 Ah in the beginning and falls 

to 1.6 Ah after 510 cycles at 1C, and at 2C discharge rate cell exhibits 2.6 Ah at the 

beginning of the cycle index and falls to 1.8 Ah after 380 cycles at 15℃.  

a) b)



106 
 

Fig. 5.5  Predicted versus actual charge capacity health estimation using 

KNN regressor algorithm for cells ‘a’ and ‘b’ at 15℃ for a) 1C discharge rate and 

b) 2C discharge rate with cycle index. 

Figures 5.6 (a) and 5.6 (b) illustrate the predicted against actual charge capacity 

health estimation using the K-nearest neighbor algorithm for cells ‘a’ and ‘b’ at 

25℃ for a discharge rate of 1C and 2C along with LIBs cycle index. Using the KNN 

algorithm, the charge capacity of the lithium-ion cell exhibits 3.0 Ah at the 

beginning of the cycle index and falls to 2.3 Ah after 550 cycles at 1C, and at 2C 

discharge rate cell exhibits 2.9 Ah at the beginning of the cycle index and falls to 

2.4 Ah after 650 cycles at 25℃.  

 

Fig. 5.6  Predicted versus actual charge capacity health estimation using 

KNN regressor algorithm for cells ‘a’ and ‘b’ at 25℃ for a) 1C discharge rate and 

b) 2C discharge rate with cycle index.  

a) b)

a) b)
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Figures 5.7 (a) and 5.7 (b) illustrate the predicted against actual charge capacity 

health estimation using the K-nearest neighbor algorithm for cells ‘a’ and ‘b’ at 

35℃ for a discharge rate of 1C and 2C along with LIBs cycle index. Using the KNN 

algorithm, the charge capacity of the lithium-ion cell exhibits 2.95 Ah at the 

beginning of the cycle index and falls to 2.4 Ah after 800 cycles at 1C and 2C 

discharge rate cell exhibits 2.9 Ah at the beginning of the cycle index and falls to 

2.35 Ah after 780 cycles at 35℃.   

 

Fig. 5.7  Predicted versus actual charge capacity health estimation using 

KNN regressor algorithm for cells ‘a’ and ‘b’ at 35℃ for a) 1C discharge rate and 

b) 2C discharge rate with cycle index.  

Figures 5.8 (a) and 5.8 (b) illustrate the predicted against actual charge capacity 

health estimation using a random forest algorithm for cells ‘a’ and ‘b’ at 15℃ for a 

discharge rate of 1C and 2C along with LIBs cycle index. This is done by examining 

the battery's voltage and current output data during charge cycles and analyzing the 

data using random forest ML models to estimate the battery's SOH. Using the 

random forest algorithm, the charge capacity of the lithium-ion cell exhibits 2.6 Ah 

at the beginning of the cycle index and falls to 1.6 Ah after 510 cycles at 1C, and 

at 2C discharge rate cell exhibits 2.7 Ah at the beginning of the cycle index and 

falls to 1.8 Ah after 380 cycles at 15℃.  

a) b)
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Fig. 5.8  Predicted versus actual charge capacity health estimation using 

random forest regressor algorithm for cells ‘a’ and ‘b’ at 15℃ for a) 1C discharge 

rate and b) 2C discharge rate with cycle index. 

Figures 5.9 (a) and 5.9 (b) illustrate the predicted against actual charge capacity 

health estimation using a random forest algorithm for cells ‘a’ and ‘b’ at 25℃ for a 

discharge rate of 1C and 2C along with LIBs cycle index. Using the random forest 

algorithm, the charge capacity of the lithium-ion cell exhibits 3.0 Ah at the 

beginning of the cycle index and falls to 2.4 Ah after 520 cycles at 1C and at 2C 

discharge rate cell exhibits 2.9 Ah at the beginning of the cycle index and falls to 

2.4 Ah after 530 cycles at 25℃.  

 

Fig. 5.9  Predicted versus actual charge capacity health estimation using 

random forest regressor algorithm for cells ‘a’ and ‘b’ at 25℃ for a) 1C discharge 

rate and b) 2C discharge rate with cycle index.  

a) b)

a) b)
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Figures 5.10 (a) and 5. 10 (b) illustrate the predicted against actual charge capacity 

health estimation using a random forest algorithm for cells ‘a’ and ‘b’ at 35℃ for a 

discharge rate of 1C and 2C along with LIBs cycle index. Using the random forest 

algorithm, the charge capacity of the lithium-ion cell exhibits 3.0 Ah at the 

beginning of the cycle index and falls to 2.4 Ah after 800 cycles at 1C and at 2C 

discharge rate cell exhibits 3.0 Ah at the beginning of the cycle index and falls to 

2.4 Ah after 800 cycles at 35℃.   

 

Fig. 5.10  Predicted versus actual charge capacity health estimation using 

random forest regressor algorithm for cells ‘a’ and ‘b’ at 35℃ for a) 1C discharge 

rate and b) 2C discharge rate with cycle index. 

5.2.2  HEALTH ESTIMATION THROUGH DISCHARGE CAPACITY  

The discharge characteristics of a LIB represent the quantity of electrical charge 

that can be delivered by the battery before it needs to be recharged. State of health 

estimation of a LIB typically involves monitoring the battery's discharge capacity 

and other performance metrics over time to determine its remaining useful life and 

predict when it will need to be replaced. Factors that can affect the health of a LIB 

include the number of discharge cycles it has undergone, operating temperature, 

and usage patterns. Figures 5.11 (a) and 5.11 (b) illustrate the predicted against 

actual discharge capacity health estimation using the decision tree algorithm for 

cells ‘a’ and ‘b’ at 15℃ for a discharge rate of 1C and 2C along with LIBs cycle 

index. Using the decision tree algorithm, the discharge capacity of the lithium-ion 

a) b)
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cell exhibits 2.6 Ah at the beginning of the cycle index and falls to 1.6 Ah after 510 

cycles at 1C, and at 2C discharge rate, the discharge capacity of the lithium-ion cell 

exhibits 2.7 Ah at the beginning of cycle index and falls to 1.8 Ah after 380 cycles.  

 

Fig. 5.11  Predicted versus actual discharge capacity health estimation using 

decision tree regressor algorithm for cells ‘a’ and ‘b’ at 15℃ for a) 1C discharge 

rate and b) 2C discharge rate with cycle index. 

Figures 5.12 (a) and 5.12 (b) illustrate the predicted against actual discharge 

capacity health estimation using the decision tree algorithm for cells ‘a’ and ‘b’ at 

25℃ for a discharge rate of 1C and 2C along with LIBs cycle index. Using the DT 

algorithm, the discharge capacity of the lithium-ion cell exhibits 2.9 Ah at the 

beginning of the cycle index and falls to 2.4 Ah after 510 cycles at 1C, and at 2C 

discharge rate cell exhibits 2.9 Ah at the beginning of the cycle index and falls to 

2.3 Ah after 680 cycles at 25℃.  

 

a) b)

a) b)
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Fig. 5.12  Predicted versus actual discharge capacity health estimation using 

decision tree regressor algorithm for cells ‘a’ and ‘b’ at 25℃ for a) 1C discharge 

rate and b) 2C discharge rate with cycle index. 

Figures 5.13 (a) and 5.13 (b) illustrate the predicted against actual discharge 

capacity health estimation using the decision tree algorithm for cells ‘a’ and ‘b’ at 

35℃ for a discharge rate of 1C and 2C along with LIBs cycle index. Using the DT 

algorithm, the discharge capacity of the lithium-ion cell exhibits 3.0 Ah at the 

beginning of the cycle index and falls to 2.35 Ah after 800 cycles at 1C, and at 2C 

discharge rate cell exhibits 3.0 Ah at the beginning of the cycle index and falls to 

2.4 Ah after 780 cycles at 35℃. 

 

Fig. 5.13  Predicted versus actual discharge capacity health estimation using 

decision tree regressor algorithm for cells ‘a’ and ‘b’ at 35℃ for a) 1C discharge 

rate and b) 2C discharge rate with cycle index. 

Figures 5.14 (a) and 5.14 (b) illustrate the predicted against actual discharge 

capacity health estimation using the K-nearest neighbor algorithm for cells ‘a’ and 

‘b’ at 15℃ for a discharge rate of 1C and 2C along with LIBs cycle index. Using 

the KNN algorithm, the discharge capacity of the lithium-ion cell exhibits 2.60 Ah 

at the beginning of the cycle index and falls to 1.6 Ah after 510 cycles at 1C, and 

at 2C discharge rate cell exhibits 2.7 Ah at the beginning of the cycle index and 

falls to 1.8 Ah after 380 cycles at 15℃.  

a) b)
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Fig. 5.14  Predicted versus actual discharge capacity health estimation using 

KNN regressor algorithm for cells ‘a’ and ‘b’ at 15℃ for a) 1C discharge rate and 

b) 2C discharge rate with cycle index. 

Figures 5.15 (a) and 5.15 (b) illustrate the predicted against actual discharge 

capacity health estimation using the K-nearest neighbor algorithm for cells ‘a’ and 

‘b’ at 25℃ for a discharge rate of 1C and 2C along with LIBs cycle index. Using 

the KNN algorithm, the discharge capacity of the lithium-ion cell exhibits 3.0 Ah 

at the beginning of the cycle index and falls to 2.35 Ah after 530 cycles at 1C and 

2C discharge rate cell exhibits 3.0 Ah at the beginning of the cycle index and falls 

to 2.2 Ah after 650 cycles at 25℃.  

 

Fig. 5.15  Predicted versus actual discharge capacity health estimation using 

KNN regressor algorithm for cells ‘a’ and ‘b’ at 25℃ for a) 1C discharge rate and 

b) 2C discharge rate with cycle index. 

a) b)

a) b)
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Figures 5.16 (a) and 5.16 (b) illustrate the predicted against actual discharge 

capacity health estimation using the K-nearest neighbor algorithm for cells ‘a’ and 

‘b’ at 35℃ for a discharge rate of 1C and 2C along with LIBs cycle index. Using 

the KNN algorithm, the discharge capacity of the lithium-ion cell exhibits 3.0 Ah 

at the beginning of the cycle index and falls to 2.35 Ah after 800 cycles at 1C and 

2C discharge rate cell exhibits 3.0 Ah at the beginning of the cycle index and falls 

to 2.3 Ah after 760 cycles at 35℃.  

 

Fig. 5.16  Predicted versus actual discharge capacity health estimation using 

KNN regressor algorithm for cells ‘a’ and ‘b’ at 35℃ for a) 1C discharge rate and 

b) 2C discharge rate with LIBs cycle index. 

Figures 5.17 (a) and 5.17 (b) illustrate the predicted against actual discharge 

capacity health estimation using a random forest algorithm for cells ‘a’ and ‘b’ at 

15℃ for a discharge rate of 1C and 2C along with LIBs cycle index. Using the 

random forest algorithm, the discharge capacity of the lithium-ion cell exhibits 2.6 

Ah at the beginning of the cycle index and falls to 1.6 Ah after 520 cycles at 1C, 

and at 2C discharge rate cell exhibits 2.7 Ah at the beginning of the cycle index and 

falls to 1.8 Ah after 380 cycles at 15℃.  

a) b)
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Fig. 5.17  Predicted versus actual discharge capacity health estimation using 

random forest regressor algorithm for cells ‘a’ and ‘b’ at 15℃ for a) 1C discharge 

rate and b) 2C discharge rate with cycle index.  

Figures 5.18 (a) and 5.18 (b) illustrate the predicted against actual discharge 

capacity health estimation using a random forest algorithm for cells ‘a’ and ‘b’ at 

25℃ for a discharge rate of 1C and 2C along with LIBs cycle index. Using the 

random forest algorithm, the discharge capacity of the lithium-ion cell exhibits 3.0 

Ah at the beginning of the cycle index and falls to 2.35 Ah after 530 cycles at 1C 

and at 2C discharge rate cell exhibits 3.0 Ah at the beginning of the cycle index and 

falls to 2.3 Ah after 680 cycles at 25℃.  

 

Fig. 5.18  Predicted versus actual discharge capacity health estimation using 

random forest regressor algorithm for cells ‘a’ and ‘b’ at 25℃ for a) 1C discharge 

rate and b) 2C discharge rate with cycle index.  

a) b)

a) b)



115 
 

Figures 5.19 (a) and 5.19 (b) illustrate the predicted against actual discharge 

capacity health estimation using a random forest algorithm for cells ‘a’ and ‘b’ at 

35℃ for a discharge rate of 1C and 2C along with LIBs cycle index. Using the 

random forest algorithm, the discharge capacity of the lithium-ion cell exhibits 3.0 

Ah at the beginning of the cycle index and falls to 2.35 Ah after 800 cycles at 1C 

and at 2C discharge rate cell exhibits 3.0 Ah at the beginning of the cycle index and 

falls to 2.3 Ah after 800 cycles at 35℃. 

 

Fig. 5.19  Predicted versus actual discharge capacity health estimation using 

random forest regressor algorithm for cells ‘a’ and ‘b’ at 35℃ for a) 1C discharge 

rate and b) 2C discharge rate with cycle index. 

For charging capacity estimation, at 35℃, KNN and DT have the best result of SOH 

prediction for both 1C and 2C discharge rates. For discharging capacity estimation, 

at 35℃, KNN & DT have the best result of SOH prediction for a 2C discharge rate. 

A similar result has been predicted for KNN on similar parameters. For charging 

capacity estimation at 25℃, DT has achieved a better result in comparison with 

both RF and KNN. For discharging capacity estimation at 25℃, KNN & DT 

achieved a better result in 2C, in comparison with both RF in similar parameters. 

For charging capacity estimation, at 15℃, both KNN and DT have achieved a better 

result in comparison with RF.  At all temperatures, the output of the KNN and DT 

model is closer to the measured value than the RF model. At 15℃ at 2C, the RF 

model's output is also optimal, although some of the individual points differ from 

a) b)
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the values that were measured. The correctness of the KNN and DT models is 

significantly higher than the RF model. Verifications are made because the model's 

generalizability is crucial, 100% data of cell ‘b’ is used to test and train the model 

to verify the generalizability of different models. The output of RF, KNN, and DT 

when using 80% training data, shows that errors increase after different datasets of 

cell ‘b’ are used, but the errors of KNN and DT methods are significantly smaller 

than those of RF. It is important to note that the KNN and DT model enhances the 

model's generalizability and can still demonstrate strong estimation capabilities. 

It is demonstrated from the model's training data results that the proposed features 

can help the model achieve accurate estimation using KNN and DT. Compared with 

RF, KNN, and DT, the KNN model has the highest accuracy and lowest error. 

Hence, even after training with only 100% of the data from cell ‘b’ the KNN model 

can still produce accurate SOH estimates. Different temperatures over the nominal 

significantly influence the cycle life of LIB and impact SOH prediction. Therefore, 

all these models are to be further verified at high temperature and low temperature 

respectively for all cells ‘a’ and cell ‘b’ with similar discharge and charge 

conditions. The results signify that a suitable selection of a data-driven method is 

very important. The result signifies that further development of a fault-tolerant 

mechanism of BMS requires higher learning with the incremental value being 

required to be used.  

5.2.3  ERROR COMPARISON WITH DIFFERENT METHODS  

Error comparisons obtained with different methods are important to consider the 

nature of the error for charge and discharge characteristics for the SOH prediction. 

Error metrics are calculated through different methods to evaluate the quality of 

their SOH prediction results. Mean absolute error, mean absolute percentage error, 

mean squared error, and root mean squared error are used in the regression 

problems, while the classification problem covers the accuracy score. The scale of 

the error metrics also affects how errors are compared, and it is difficult to compare 
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these methods directly, so normalizations are done to make the comparison more 

meaningful. Statistical significance is observed to ensure that any differences in 

error through MAE, MAPE, MSE, and RMSE between methods are significant. 

Table 5.2, Table 5.3, and Table 5.4 list out a comparison of testing and training 

dataset results for cell ‘a’ using the MAPE, RMSE, MSE, and MAE error 

techniques for the three supervised learning algorithms DT, KNN, and RF 

regressors at 15℃, 25℃, and 35℃ respectively.  

Table 5.2 Comparison of testing dataset results using the MAPE, RMSE, 

MSE, and MAE error techniques for the three supervised learning algorithms DT, 

KNN, and RF regressors at 15℃. 

Test and Training Dataset (80% Training + 20% Testing for cell 'a') NMC cell at 15℃ 

Model DT KNN RF 

  Error Value Error Value Error Value 

MAE 2.63725E-03 1.91569E-03 8.22488E-03 

MAPE 1.32111E-03 9.85191E-04 4.19216E-03 

RMSE 5.60724E-03 3.13331E-03 1.11461E-02 

MSE 3.14412E-05 9.81765E-06 1.24236E-04 

 

Table 5.3 Comparison of testing dataset results using the MAPE, RMSE, 

MSE, and MAE error techniques for the three supervised learning algorithms DT, 

KNN, and RF regressors at 25℃. 

Test and Training Dataset (80% Training + 20% Testing for cell 'a') NMC cell at 25℃ 

Model DT KNN RF 

  Error Value Error Value Error Value 

MAE 3.78641E-03 3.62524E-03 6.16931E-03 

MAPE 1.48921E-03 1.40631E-03 2.40260E-03 

RMSE 1.26813E-02 9.73320E-03 1.17238E-02 

MSE 1.60816E-04 9.47351E-05 1.37448E-04 
 

Table 5.4 Comparison of testing dataset results using the MAPE, RMSE, 

MSE, and MAE error techniques for the three supervised learning algorithms DT, 

KNN, and RF regressors at 35℃ 
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Test and Training Dataset (80% Training + 20% Testing for cell 'a') NMC cell at 35℃ 

Model DT KNN RF  
Error Value Error Value Error Value 

MAE 3.65806E-03 3.35097E-03 8.80143E-03 

MAPE 1.43534E-03 1.33972E-03 3.56308E-03 

RMSE 1.14894E-02 1.01762E-02 1.46577E-02 

MSE 1.32006E-04 1.03555E-04 2.14847E-04 

 

Table 5.5, Table 5.6, and Table 5.7 list out a comparison of validation dataset results 

for cell ‘b’ using the MAPE, RMSE, MSE, and MAE error techniques for the three 

supervised learning algorithms DT, KNN, and RF regressors at 15℃, 25℃, and 

35℃ respectively.  

Table 5.5 Comparison of validation dataset results for cell ‘b’ using the 

MAPE, RMSE, MSE, and MAE error techniques for the three supervised learning 

algorithms DT, KNN, and RF at 15℃.  

Validation Dataset (100% for validation for cell 'b') NMC cell 'b' at 15℃ 

Model DT KNN RF 

  Error Value Error Value Error Value 

MAE 1.30118E-02 1.29728E-02 1.67570E-02 

MAPE 6.24932E-03 6.24155E-03 8.18244E-03 

RMSE 2.06257E-02 2.10567E-02 2.38013E-02 

MSE 4.25421E-04 4.43384E-04 5.66503E-04 

 

Table 5.6 Comparison of validation dataset results for cell ‘b’ using the 

MAPE, RMSE, MSE, and MAE error techniques for the three supervised learning 

algorithms DT, KNN, and RF at 25℃.  

Validation Dataset (100% for validation for cell 'b') NMC cell 'b' at 25℃ 

Model DT KNN RF 

  Error Value Error Value Error Value 

MAE 2.72706E-02 2.70127E-02 2.71204E-02 

MAPE 1.06377E-02 1.05432E-02 1.05881E-02 

RMSE 3.22903E-02 3.16871E-02 3.19584E-02 

MSE 1.04266E-03 1.00408E-03 1.02134E-03 
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Table 5.7 Comparison of validation dataset results for cell ‘b’ using the 

MAPE, RMSE, MSE, and MAE error techniques for the three supervised learning 

algorithms DT, KNN, and RF at 35℃.  

Validation Dataset (100% for validation for cell 'b') NMC cell 'b' at 35℃ 

Model DT KNN RF 

  Error Value Error Value Error Value 

MAE 1.37012E-02 1.37321E-02 1.48082E-02 

MAPE 5.52650E-03 5.53572E-03 5.96257E-03 

RMSE 2.05500E-02 2.00694E-02 1.96755E-02 

MSE 4.22301E-04 4.02780E-04 3.87124E-04 

 

Further examination of model error unveils that the developed methodology and 

algorithms exhibit superiority over those presented in prior investigations reported 

across several academic journals. The subsequent comparison is delineated in Table 

5.8, it is observed that DT and KNN scores better than other supervised as well as 

non-supervised learning methods. As different researchers adopted their strategies, 

the wide variance in results indicates a need for standardization of methods and 

parameter extraction. As AI methods are dependent on data and its quality, it is also 

imperative that for universalizing the process, BMS and battery manufacturers 

should come forward and allow researchers and engineers to create algorithms and 

design a suitable system.  

Table 5.8 Comparison of developed methodology and models with other 

methods employed by researchers. 
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Based on the test and training datasets for Cell "a" and the validation dataset for 

Cell "b," the performance of DT, KNN, and RF models across various temperature 

conditions (15℃, 25℃, 35℃) was evaluated using multiple error metrics: MAE, 

MAPE, RMSE, and MSE. 

During test and training dataset of Cell "a", at 15℃, it is observed that KNN 

emerged as the most accurate model with the lowest error metrics (MAE: 0.19%, 

MAPE: 0.10%, RMSE: 0.31%, MSE: 0.00%), where as DT also performed well 

but with slightly higher error values compared to KNN. RF showed the highest 

errors (MAE: 0.82%, RMSE: 1.11%). At 25℃, KNN maintained superior 

performance (MAE: 0.36%, MAPE: 0.14%, RMSE: 0.97%, MSE: 0.01%), 

followed closely by DT. RF again exhibited the highest error values. At 35℃, KNN 

continued to outperform the other models (MAE: 0.34%, MAPE: 0.13%, RMSE: 

1.02%, MSE: 0.01%). DT remained competitive, while RF had the highest errors 

(MAE: 0.88%, RMSE: 1.47%). 

During validation with dataset Cell "b", at 15℃, it is observed that DT and KNN 

both demonstrated similar performance (MAE: 1.30%, MAPE: 0.62%), with RF 

having the highest errors (RMSE: 2.38%). At 25℃, KNN slightly outperformed DT 

and RF, although the error values were higher in this condition (MAE: 2.70%, 

RMSE: 3.17%) with RF exhibited errors comparable to DT but was slightly higher. 
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At 35℃, KNN and DT performed similarly, with KNN having a marginal 

advantage in RMSE (2.01%). RF had slightly higher errors, particularly in MAPE 

(0.60%). 

Overall, KNN consistently showed the best performance across both the training 

and validation datasets, making it the most reliable model for state estimation in the 

provided scenarios. DT was a close second, particularly effective in the validation 

dataset where it matched KNN's performance. RF generally had higher errors, 

suggesting it may not be as well-suited for this task, especially under validation 

conditions. The results indicate that KNN might be the preferred model for state 

estimation in similar datasets, but the effectiveness of the models can vary 

depending on specific operating conditions.  

At the same time, models like Adaboost, FNN, BiLSTM, 1DCNN, and DSMTNet 

were reported in other references, with varying performance. Adaboost and 

BiLSTM showed relatively low errors, compared to KNN and DT. LSTM, 

Encoder–decoder, and CNN-LSTM models were reported to have significantly 

higher errors, especially in the MAPE metric, indicating potential issues in accuracy 

or overfitting. DSMTNet had the lowest errors among the newer models but still 

didn't outperform the traditional KNN model. The overall results suggest that while 

newer models offer potential, traditional methods like KNN still provide robust and 

accurate results in this specific application. 

5.3  STATE OF CHARGE ESTIMATION 

A comprehensive analysis was conducted on 20 LFP prismatic cells to assess their 

voltage variations under varying discharging times. Notably, significant voltage 

discrepancies were observed among individual cells, aligning with distinct 

capacities. To initiate the battery pack assembly process, a crucial initial step 

involves aligning and matching the capacity and voltage responses against different 

discharging rates. This meticulous matching process ensures the harmonization of 

individual cell characteristics, enabling a more coherent and efficient performance 
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when integrated into a battery pack. By addressing voltage variations and capacity 

discrepancies at this early stage, the subsequent battery pack is poised to exhibit 

enhanced overall stability and reliability in its discharge characteristics. The 

individual cell’s OCV at the start of discharge after rest (OCV relaxation period for 

LFP for SOC investigations) and just after the start of discharge (with C/2 discharge 

rating, current- 43A) is graphically represented at 5.20 (a), whereas the duration of 

discharge after full charge and rest are plotted at Fig. 5.20 (b). In both cases, it is 

observed that even for the same manufacturing code and similar test setup, 

individual cell exhibits wide variance and necessitate the process of cell selection.  

      

Fig. 5.20  Bar chart analysis of (a) the first 40 minutes and (b) the last 40 

minutes for individual LFP cells. 

The voltage after rest returns to its stable OCV state through a relaxation 

mechanism. This process occurs due to the presence of a Li+ gradient across the 

positive electrode, which seeks to reach a state of minimum energy following a 

partial charge or discharge cycle. As voltage is contingent upon the surface 

concentration of lithium-ion within the electrode, this gradient gradually diminishes 

over time, thereby impacting the voltage observed at the terminals of LIBs. 

Further, the discharging voltage of individual cells was analyzed at 10-minute 

intervals during continuous discharge until complete charging using a CC-CV 

charger, followed by a 30-minute resting period. The graph depicting this data over 

time for each cell is presented in Figure 5.21.  It was recorded that following an 

initial 10-minute discharge period, cells exhibited a rather linear discharge trend 
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until reaching the discharge threshold limit. As every LIB consists of a BMS, it is 

essential to make the cells behave within a closed voltage window across a full 

discharge period.  
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Fig. 5.21  Voltage response for individual LFP cells for every 10 minutes 

until full discharge. 

It is observed that LFP cells exhibit a flat plateau range and are found to be from 

the first 3 minutes to 80 minutes of constant discharge at 43A. This is due to the 

lithiation process of LFP exhibiting a direct pathway characterized by a prolonged 

phase transition between the Li-poor (α) and Li-rich (β) phases. This transition is 

substantiated by the extended plateau observed in the OCV curve, depicted in Fig. 

5.22, which covers nearly the entire SOC range. It is reported that LFP has a cubic 

crystal structure, which expands almost isotopically as lithium-ion are intercalated 

and the expansion of LFP is linear in the whole stoichiometric window. 
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Fig. 5.22  Elbow, plateau, and knee analysis for individual LFP cells until full 

discharge. 

Individual cells results were further analyzed using statistical tools and graphs were 

plotted for standard deviation with individual cell voltage difference at 0.00 min, 

standard deviation with individual cell voltage difference at 0.18 min, standard 

deviation and normal distribution for individual cell capacity difference, standard 

deviation for voltage between 0.00 min and 0.18 min at C/2 discharge rate for all 

20 cell and presented in Fig. 5.23.  
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Fig. 5.23  Graphs on standard deviation (ΔV0.00, ΔV0.18, ΔCap) and normal 

distribution of ΔCap. 

With the aid of this information, the final decision on the suitable cells was carried 

out and is analyzed as Fig. 5.24 for making a battery pack.  
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Fig. 5.24  Final cell selection for LFP battery pack. 

Following the assembly of the battery pack, a comprehensive discharge process 

was conducted. The resulting graph as in Fig. 5.25 illustrates the voltage response 

to the discharge current, observed after the batteries reach their full charge capacity. 

This data provides a detailed representation of how the battery pack's voltage varies 

under different discharge currents, shedding light on its performance characteristics 

and aiding in the assessment of its overall efficiency and stability during discharge 

cycles.   

 

Fig. 5.25  Voltage response for LFP battery pack until full discharge. 

40.0000

45.0000

50.0000

55.0000

1 9
1

7
2

5
3

3
4

1
4

9
5

7
6

5
7

3
8

1
8

9
9

7
1

0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

2
5
7

2
6
5

V
o

lt
ag

e 
(V

)

Time (min)

Voltage fluctuations during discharge of the battery pack



129 
 

The dataset of individual cells is split into training, validation, and testing sets and 

is split into training and validation in the ratio of 80% to 20%, respectively. The 

training set data is used to train the model, and finally, the testing set of the battery 

pack is used to test the performance. The analysis and result of the application of 

the linear regression algorithm are as per Fig. 5.26.  

 

Fig. 5.26  LFP battery pack voltage prediction. 

5.4  CHAPTER SUMMARY 

It is of high importance to accurately predict the SOH for e-mobility applications. 

This paper presents multiple data-driven SOH prediction methods based on 

supervised learning. After investigating the aging attributes through datasets at 

different discharge rates and temperatures. The performance of these models is 

extracted and compared on different model accuracies and validated through 

experiments on similar conditions. The experimental model demonstrates a good 

prediction performance using KNN and DT methods and outperforms in terms of 

accuracy and generalizability. The outcome of battery health indices and their usage 

in BMS development, cloud technology, and further development of various 

application-oriented equipment and devices are provided by this method, which can 

significantly lower the cost and complexity. 
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At the temperature range from 15℃ to 35℃ which is below the critical threshold 

and recommended temperature by the manufacturer, the fade rate of SOH 

decreases, indicating unique nonlinear degradation mechanisms. KNN has been 

used for battery health estimation of e-mobility under different charge, discharge, 

and temperature conditions. KNN is effective in estimating battery health, but its 

performance is affected by the size of the training data. In general, when comparing 

errors obtained with different methods, it is important to carefully consider the error 

metric being used, the scale of the error, the context in which the methods are being 

applied, and whether any observed differences in error are statistically significant. 

The degradation of battery pack capacity is not considered in this study, even 

though a trustworthy battery pack SOH estimate method is suggested, and its ML 

model parameters are updated continually via the KNN, RF, and DT learning 

methods. 

SOH and SOC serve as critical indicators pivotal for monitoring LIBs deployed in 

e-mobilities. While laboratory environments have established standard 

performance tests for state estimation, such tests are impractical to conduct onboard 

vehicles. At the same time, heavy and costly state estimation methods that require 

higher computing power or costly hardware also make it impractical to implement 

or conduct on-board estimation. To address these challenges, we developed novel 

data-driven approaches that can be virtually applied to LIB. Leveraging real-time 

variables accessible during ordinary e-mobility operation including battery current, 

voltage, and temperature, our data-driven models are designed to accurately 

estimate different states. This study presents comprehensive experimental 

validation of our method, introducing novel features such as SOH and SOC 

estimation. By subjecting typical LIB usage data to our proposed method, we 

successfully estimate SOH and SOC, comparing results to direct measurements 

obtained from standard tests. Our findings demonstrate high accuracy in estimation 

for typical EV operating conditions, facilitating online detection of battery 

degradation and energy storage. 
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CHAPTER 6   

CONCLUSIONS AND FUTURE SCOPE 

This chapter offers a comprehensive overview of the research efforts in creating 

innovative data-driven models for analyzing the critical states (SOC and SOH) of 

LIB in e-mobility. Specifically, the focus is on batteries made with different electro 

chemistries, such as NMC and LFP, operating under various conditions (1C and 2C 

discharging with 0.5C charging) at different temperatures (15℃, 25℃, and 35℃). 

The emphasis lies on experimental validation, involving the creation of real 

batteries through standardized manufacturing processes and subsequent testing 

under diverse conditions. The chapter not only outlines the procedures for cell 

testing, matching, and the selection process for battery production but also conducts 

a comparative review of different model-based data-driven methods. This includes 

an exploration of their limitations and shortcomings, providing valuable insights 

for further advancements in the field. 

6.1  CONCLUSIONS 

Achieving carbon neutrality is essential for mitigating global warming and reducing 

greenhouse gas emissions. The widespread adoption of lithium-ion batteries (LIBs) 

in the mobility sector is a key driver in this transition to cleaner energy solutions. 

LIBs are characterized by a broad spectrum of performance and failure metrics- 

such as performance, efficiency, lifespan, reliability, and safety- especially under 

the varied operational and environmental conditions typical of e-mobility 

applications. Understanding the behavior and failure modes of LIBs, however, is 

inherently complex and not directly measurable, leading to the characterization of 

various figures of merit (FOMs). These FOMs are typically derived through various 

modeling methods, each with its own set of strengths and limitations. Among these, 

machine learning (ML) methods have emerged as particularly effective for rapid 
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estimation. ML approaches themselves are diverse, offering multiple 

categorizations based on their underlying techniques and applications. 

This thesis underscores the critical need for a cleaner and more sustainable world 

by analyzing the relationship between global electricity generation, population 

growth, and their impact on emissions and global warming, with a particular 

emphasis on the transportation sector. The expansion and increasing demand for e-

mobility, with a particular focus on LIBs are comprehensively examined from 

production to usage perspectives. Given the diverse performance metrics inherent 

to LIBs, this research meticulously explores and critically analyzes various 

modeling techniques through an extensive literature review, which serves to outline 

and establish the foundational framework for the study, ensuring a rigorous 

approach to understanding and advancing the application of LIBs in the e-mobility 

sector. 

The experimental results on charging and discharging LIBs revealed that individual 

cells exhibit varied behavior under different operating conditions. This variability 

is attributed to factors such as manufacturing differences and storage conditions. 

Within the same batch, NMC cells demonstrated significant variation in equivalent 

full cycle capacity and percentage loss in capacity, highlighting the need for voltage 

and capacity grading when assembling battery packs. Similar is the case where LFP 

cells from the same batch also showed discrepancies in capacity and aging 

characteristics, underscoring the importance of stringent quality control and 

accurate modeling for battery pack assembly and an intelligent BMS that monitor 

and balance individual cells. Additionally, some cells exhibited higher voltages 

even after identical full charges and resting periods. Different models for charge 

and discharge capacities yielded varied results, and various machine learning 

algorithms demonstrated the least error across different error metrics. 

Within this thesis, an investigation explores the consideration of four distinct 

model-based data-driven estimation methods for the LIB state. The primary focus 



133 
 

is on decoding two pivotal parameters of battery state: SOC and SOH. The 

development and validation of these estimators are thoroughly carried out through 

multiple data-driven modeling iterations, leveraging the capabilities of the Google 

Colaboratory environment. This specialized environment is chosen to facilitate the 

actual cell-level experiments, specifically tailored to different electrochemistry, 

such as the NMC-based cylindrical foam factor and the LFP-based prismatic foam 

factor. The experimental framework involves a comprehensive testing regimen 

employing diverse charger-discharger setups, tactically chosen to closely mimic 

real-world target systems. This meticulous approach ensures the robustness and 

applicability of the proposed model-based data-driven estimation methods across 

various electrochemical scenarios, laying a solid foundation for advancing battery 

state estimation in both research and practical applications.  

Experimental time series data, reflecting different battery ages, consist of 

measurements (sampled at 1 second) of battery capacity, voltage, current, and 

temperature. In comparing the different estimation approaches, it can be concluded 

that the ML-based technique proves to be a more effective approach for addressing 

the problem, achieving superior estimation results with a relatively minor 

development effort. A potential avenue for future work could involve testing these 

proposed techniques on experimental data or exploring alternative estimation 

strategies. The present study can provide guidelines to accurately estimate the SOH 

and SOC for different LIBs cell chemistries.  The environmental and operational 

conditions incorporated in the experiment are robust enough to give decent 

forecasting over the complete lifecycle or charge cycle, which is the novelty of the 

research work. There is a direct influence of environmental and operational 

conditions on SOC and SOH and accuracy varies accordingly.  

The outcomes of experimental investigation done on NMC cells for SOH with 

different operating conditions (1C and 2C) with different environmental conditions 

(15℃, 25℃, and 35℃) suggest that KN and DT are better ML methods than other 

ML-based methods. At the same time, the outcomes of the experimental 
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investigation done on the LFP battery pack for SOC suggest that LR is comparable 

to ML methods among several other ML-based methods. The current study and test 

plan may also be utilized to investigate alternative cell electrochemistry at different 

operating and environmental conditions, which is the project's future focus. 

6.2  FUTURE SCOPE 

The study highlights several future research directions for ML-based fault diagnosis 

in LIBs used in e-mobility. Future research should address the limitations of ML-

based fault diagnosis in LIBs used in e mobility, including overcoming the lengthy 

training processes and the challenge of acquiring extensive fault data, which is often 

restricted due to manufacturer confidentiality. There is a need for improved access 

to comprehensive and realistic datasets, particularly for high-energy applications 

with complex cell configurations. Given the high risks and costs associated with 

real fault simulations, future work should focus on simulation studies to obtain 

relevant data. Additionally, research should explore methods to capture insights 

into internal electrochemical dynamics, addressing challenges related to 

distinguishing faults with similar external characteristics and sensor faults versus 

battery faults. Research should target advancements in sensing technology, 

processors, and rapid data analysis to enhance early fault detection and model 

accuracy. Emphasis should be placed on developing sensor-less or minimal-sensor 

approaches to improve fault diagnosis in practical applications such as e-mobility 

and grid power storage. Cloud-based fault diagnosis, leveraging cloud computing 

and parallel processing, represents a promising avenue for future exploration, 

aiming to support effective BMS over the lifespan of LIBs.  
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Cycle_Index Start_Time End_Time Test_Time (s) Cycle Time (s) Min_Current (A)Max_Current (A)Min_Voltage (V)Max_Voltage (V)Charge_Capacity (Ah)Discharge_Capacity (Ah) Capacity_Loss (Ah) Charge_Energy (Wh)Discharge_Energy (Wh)Energy Loss (Wh)
1 11:29.0 17:29.1 14770.085 14770.085 -1.5 1.499 1.999 4.2 2.582 2.724 -0.142 10.092 9.551 0.541
2 17:29.1 29:02.7 29863.699 15093.614 -1.5 1.499 1.999 4.2 2.731 2.732 -0.001 10.584 9.587 0.997
3 29:02.9 40:26.0 44947.034 15083.335 -1.5 1.499 1.999 4.2 2.731 2.727 0.004 10.581 9.575 1.006
4 40:26.0 08:00.5 64601.545 19654.511 -6 1.499 1.999 4.2 5.436 5.414 0.022 21.061 17.261 3.8
5 10:00.6 45:51.9 74072.87 9471.325 -5.999 1.499 1.999 4.2 2.698 2.689 0.009 10.439 8.575 1.864
6 47:51.9 23:11.7 83512.706 9439.836 -5.999 1.499 1.999 4.2 2.688 2.679 0.009 10.401 8.547 1.854
7 25:11.8 00:09.6 92930.614 9417.908 -5.999 1.499 1.998 4.2 2.683 2.674 0.009 10.386 8.544 1.842
8 02:09.7 36:41.8 102322.792 9392.178 -5.999 1.499 1.999 4.2 2.671 2.664 0.007 10.34 8.516 1.824
9 38:41.8 12:53.1 111694.087 9371.295 -5.999 1.499 1.999 4.2 2.664 2.657 0.007 10.313 8.505 1.808

10 14:53.1 48:47.0 121048.038 9353.951 -5.999 1.499 1.998 4.2 2.657 2.651 0.006 10.289 8.496 1.793
11 50:47.1 24:24.7 130385.713 9337.675 -5.999 1.499 1.999 4.2 2.651 2.646 0.005 10.267 8.486 1.781
12 26:24.8 59:46.2 139707.195 9321.482 -5.999 1.499 1.999 4.2 2.646 2.641 0.005 10.246 8.478 1.768
13 01:46.2 34:53.6 149014.611 9307.416 -5.999 1.499 1.999 4.2 2.64 2.635 0.005 10.226 8.469 1.757
14 36:53.7 09:45.8 158306.789 9292.178 -5.999 1.499 1.999 4.2 2.635 2.63 0.005 10.206 8.459 1.747
15 11:45.8 44:23.3 167584.349 9277.56 -5.999 1.499 1.999 4.2 2.63 2.625 0.005 10.187 8.45 1.737
16 46:23.4 18:45.6 176846.569 9262.22 -5.999 1.499 1.999 4.2 2.625 2.62 0.005 10.169 8.441 1.728
17 20:45.6 52:53.5 186094.479 9247.91 -5.999 1.499 1.998 4.2 2.619 2.616 0.003 10.149 8.431 1.718
18 54:53.5 26:48.3 195329.348 9234.869 -5.999 1.499 1.997 4.2 2.615 2.611 0.004 10.132 8.42 1.712
19 28:48.4 00:27.8 204548.803 9219.455 -5.998 1.499 1.997 4.2 2.609 2.606 0.003 10.113 8.408 1.705
20 02:27.9 33:54.1 213755.096 9206.293 -5.998 1.499 1.999 4.2 2.605 2.601 0.004 10.096 8.397 1.699
21 35:54.1 07:06.5 222947.497 9192.401 -5.999 1.499 1.999 4.2 2.6 2.596 0.004 10.078 8.386 1.692
22 09:06.5 40:05.1 232126.103 9178.606 -5.999 1.499 1.999 4.2 2.595 2.592 0.003 10.061 8.376 1.685
23 42:05.2 12:50.8 241291.829 9165.726 -5.999 1.499 1.997 4.2 2.591 2.587 0.004 10.044 8.364 1.68
24 14:50.9 45:23.4 250444.449 9152.62 -5.999 1.499 1.998 4.2 2.586 2.583 0.003 10.027 8.353 1.674
25 47:23.5 17:42.9 259583.939 9139.49 -5.999 1.499 1.998 4.2 2.582 2.579 0.003 10.011 8.342 1.669
26 19:43.0 49:51.0 268711.97 9128.031 -5.999 1.499 1.997 4.2 2.578 2.575 0.003 9.996 8.332 1.664
27 51:51.0 21:47.3 277828.263 9116.293 -5.999 1.499 1.999 4.2 2.574 2.571 0.003 9.982 8.323 1.659
28 23:47.3 53:31.3 286932.318 9104.055 -5.999 1.499 1.999 4.2 2.569 2.566 0.003 9.966 8.311 1.655
29 55:31.4 25:03.1 296024.119 9091.801 -5.999 1.499 1.999 4.2 2.565 2.562 0.003 9.95 8.3 1.65
30 27:03.2 56:21.7 305102.677 9078.558 -5.999 1.499 1.997 4.2 2.56 2.558 0.002 9.934 8.288 1.646
31 58:21.7 27:29.4 314170.383 9067.706 -5.998 1.499 1.998 4.2 2.556 2.554 0.002 9.919 8.276 1.643
32 29:29.4 58:24.3 323225.347 9054.964 -5.998 1.499 1.998 4.2 2.552 2.55 0.002 9.904 8.266 1.638
33 00:24.4 29:08.5 332269.46 9044.113 -5.998 1.499 1.999 4.2 2.548 2.546 0.002 9.89 8.255 1.635
34 31:08.5 59:41.1 341302.069 9032.609 -5.998 1.499 1.998 4.2 2.545 2.542 0.003 9.877 8.245 1.632
35 01:41.1 30:02.1 350323.057 9020.988 -5.999 1.499 1.998 4.2 2.541 2.539 0.002 9.865 8.235 1.63
36 32:02.1 00:11.2 359332.177 9009.12 -5.999 1.499 1.998 4.2 2.538 2.535 0.003 9.852 8.226 1.626
37 02:11.2 30:17.9 368338.912 9006.735 -5.999 1.499 1.997 4.2 2.537 2.534 0.003 9.849 8.225 1.624
38 32:17.9 00:11.7 377332.663 8993.751 -5.999 1.499 1.999 4.2 2.533 2.531 0.002 9.837 8.215 1.622
39 02:11.7 29:51.7 386312.692 8980.029 -5.999 1.499 1.997 4.2 2.529 2.527 0.002 9.823 8.204 1.619
40 31:51.8 59:20.4 395281.351 8968.659 -5.999 1.499 1.997 4.2 2.526 2.523 0.003 9.81 8.194 1.616
41 01:20.4 28:36.0 404237.002 8955.651 -5.999 1.499 1.999 4.2 2.521 2.519 0.002 9.795 8.183 1.612
42 30:36.1 57:40.1 413181.126 8944.124 -5.999 1.499 1.999 4.2 2.517 2.515 0.002 9.777 8.169 1.608
43 59:40.2 26:32.1 422113.117 8931.991 -6 1.499 1.997 4.2 2.512 2.51 0.002 9.759 8.155 1.604
44 28:32.2 55:14.4 431035.371 8922.254 -6 1.499 1.996 4.2 2.508 2.506 0.002 9.744 8.143 1.601
45 57:14.4 23:43.5 439944.534 8909.163 -6 1.499 1.997 4.2 2.504 2.5 0.004 9.729 8.124 1.605
46 25:43.6 52:00.6 448841.608 8897.074 -6 1.499 1.997 4.2 2.499 2.498 0.001 9.713 8.117 1.596
47 54:00.7 20:09.0 457730.026 8888.418 -6 1.499 1.997 4.2 2.496 2.494 0.002 9.702 8.105 1.597
48 22:09.1 48:07.3 466608.318 8878.292 -6 1.499 1.999 4.2 2.493 2.491 0.002 9.69 8.093 1.597
49 50:07.4 15:54.6 475475.623 8867.305 -5.999 1.499 1.997 4.2 2.489 2.487 0.002 9.676 8.081 1.595
50 17:54.7 43:31.8 484332.793 8857.17 -5.999 1.499 1.996 4.2 2.486 2.484 0.002 9.663 8.071 1.592
51 45:31.8 10:58.0 493179.011 8846.218 -5.999 1.499 1.997 4.2 2.482 2.48 0.002 9.65 8.06 1.59
52 12:58.1 38:15.5 502016.462 8837.451 -5.999 1.499 1.997 4.2 2.479 2.477 0.002 9.639 8.05 1.589
53 40:15.5 05:22.9 510843.897 8827.435 -5.999 1.499 1.999 4.2 2.476 2.473 0.003 9.627 8.04 1.587
54 07:23.0 32:21.6 519662.635 8818.738 -6 1.499 1.999 4.2 2.473 2.471 0.002 9.617 8.031 1.586
55 34:21.7 59:09.4 528470.442 8807.807 -5.999 1.499 1.996 4.2 2.469 2.467 0.002 9.604 8.021 1.583
56 01:09.5 25:51.3 537272.326 8801.884 -5.999 1.499 1.997 4.2 2.466 2.464 0.002 9.595 8.011 1.584
57 27:51.4 52:22.8 546063.789 8791.463 -5.999 1.499 1.998 4.2 2.463 2.461 0.002 9.584 8.003 1.581
58 54:22.8 18:41.1 554842.089 8778.3 -5.999 1.499 1.998 4.2 2.46 2.458 0.002 9.573 7.993 1.58
59 20:41.1 44:45.6 563606.634 8764.545 -5.999 1.499 1.998 4.2 2.456 2.454 0.002 9.559 7.982 1.577
60 46:45.7 10:39.3 572360.289 8753.655 -5.999 1.499 1.996 4.2 2.452 2.45 0.002 9.544 7.97 1.574
61 12:39.3 36:23.0 581104.037 8743.748 -5.999 1.499 1.997 4.2 2.448 2.446 0.002 9.528 7.956 1.572
62 38:23.1 01:55.4 589836.397 8732.36 -6 1.499 1.997 4.2 2.444 2.442 0.002 9.512 7.944 1.568
63 03:55.4 27:18.5 598559.539 8723.142 -6 1.499 1.997 4.2 2.44 2.438 0.002 9.498 7.93 1.568
64 29:18.6 52:31.8 607272.76 8713.221 -6 1.499 1.996 4.2 2.437 2.435 0.002 9.487 7.919 1.568
65 54:31.8 17:35.4 615976.42 8703.66 -6 1.499 1.999 4.2 2.434 2.431 0.003 9.475 7.908 1.567
66 19:35.5 42:29.5 624670.489 8694.069 -5.999 1.499 1.998 4.2 2.43 2.428 0.002 9.462 7.897 1.565
67 44:29.5 07:12.5 633353.507 8683.018 -5.999 1.499 1.999 4.2 2.427 2.424 0.003 9.449 7.885 1.564
68 09:12.6 31:46.2 642027.203 8673.696 -5.999 1.499 1.999 4.2 2.423 2.421 0.002 9.437 7.874 1.563
69 33:46.3 56:09.6 650690.622 8663.419 -5.999 1.499 1.999 4.2 2.42 2.418 0.002 9.425 7.864 1.561
70 58:09.7 20:25.2 659346.16 8655.538 -5.999 1.499 1.999 4.2 2.417 2.415 0.002 9.414 7.854 1.56
71 22:25.2 44:32.0 667992.98 8646.82 -5.999 1.499 1.999 4.2 2.414 2.412 0.002 9.403 7.845 1.558
72 46:32.0 08:32.1 676633.062 8640.082 -5.999 1.499 1.998 4.2 2.411 2.409 0.002 9.395 7.836 1.559
73 10:32.1 32:22.5 685263.526 8630.464 -5.999 1.499 1.999 4.2 2.409 2.406 0.003 9.385 7.828 1.557
74 34:22.6 56:00.4 693881.409 8617.883 -5.999 1.499 1.997 4.2 2.406 2.403 0.003 9.375 7.819 1.556
75 58:00.5 19:25.4 702486.366 8604.957 -5.999 1.499 1.997 4.2 2.402 2.4 0.002 9.363 7.808 1.555
76 21:25.4 42:40.8 711081.809 8595.443 -5.999 1.499 1.998 4.2 2.398 2.396 0.002 9.347 7.794 1.553
77 44:40.9 05:44.6 719665.61 8583.801 -6 1.499 1.995 4.2 2.393 2.391 0.002 9.327 7.779 1.548
78 07:44.7 28:38.4 728239.384 8573.774 -6 1.499 1.997 4.2 2.389 2.387 0.002 9.312 7.766 1.546
79 30:38.4 51:21.2 736802.186 8562.802 -6 1.499 1.999 4.2 2.385 2.383 0.002 9.299 7.753 1.546
80 53:21.3 13:54.2 745355.197 8553.011 -6 1.499 1.999 4.2 2.382 2.38 0.002 9.287 7.74 1.547
81 15:54.3 36:17.3 753898.292 8543.095 -5.999 1.499 1.995 4.2 2.379 2.377 0.002 9.275 7.729 1.546
82 38:17.4 58:31.5 762432.533 8534.241 -5.999 1.499 1.997 4.2 2.376 2.373 0.003 9.264 7.719 1.545
83 00:31.6 20:35.0 770955.953 8523.42 -5.999 1.499 1.996 4.2 2.372 2.37 0.002 9.251 7.708 1.543
84 22:35.0 42:29.4 779470.392 8514.439 -5.999 1.499 1.997 4.2 2.369 2.367 0.002 9.24 7.697 1.543
85 44:29.5 04:15.6 787976.606 8506.214 -5.999 1.499 1.996 4.2 2.366 2.364 0.002 9.228 7.687 1.541
86 06:15.6 25:53.6 796474.573 8497.967 -5.999 1.499 1.995 4.2 2.363 2.361 0.002 9.218 7.677 1.541
87 27:53.6 47:25.0 804965.963 8491.39 -5.999 1.499 1.998 4.2 2.36 2.358 0.002 9.209 7.668 1.541
88 49:25.0 08:42.5 813443.493 8477.53 -5.999 1.499 1.999 4.2 2.357 2.355 0.002 9.197 7.657 1.54
89 10:42.6 29:46.9 821907.949 8464.456 -5.999 1.499 1.999 4.2 2.354 2.352 0.002 9.186 7.647 1.539
90 31:47.0 50:38.7 830359.722 8451.773 -5.999 1.499 1.998 4.2 2.35 2.347 0.003 9.17 7.634 1.536
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91 52:38.8 11:21.0 838802.02 8442.298 -5.999 1.499 1.995 4.2 2.345 2.343 0.002 9.153 7.62 1.533
92 13:21.1 31:52.6 847233.623 8431.603 -6 1.499 1.996 4.2 2.341 2.339 0.002 9.136 7.605 1.531
93 33:52.7 52:14.7 855655.742 8422.119 -6 1.499 1.994 4.2 2.337 2.335 0.002 9.124 7.594 1.53
94 54:14.8 12:26.8 864067.751 8412.009 -6 1.499 1.997 4.2 2.334 2.332 0.002 9.112 7.581 1.531
95 14:26.8 32:29.7 872470.681 8402.93 -6 1.499 1.995 4.2 2.331 2.329 0.002 9.1 7.569 1.531
96 34:29.7 52:23.0 880864.035 8393.354 -5.999 1.499 1.994 4.2 2.328 2.326 0.002 9.088 7.558 1.53
97 54:23.1 12:06.9 889247.877 8383.842 -5.999 1.499 1.999 4.2 2.324 2.322 0.002 9.076 7.546 1.53
98 14:06.9 31:40.3 897621.266 8373.389 -5.999 1.499 1.996 4.2 2.321 2.319 0.002 9.063 7.536 1.527
99 33:40.3 51:05.6 905986.61 8365.344 -5.999 1.499 1.995 4.2 2.318 2.316 0.002 9.052 7.525 1.527

100 53:05.7 10:22.9 914343.887 8357.277 -5.999 1.499 1.996 4.2 2.315 2.313 0.002 9.042 7.515 1.527
101 12:23.0 29:33.3 922694.299 8350.412 -5.999 1.499 1.996 4.2 2.312 2.31 0.002 9.033 7.506 1.527
102 31:33.3 48:33.4 931034.39 8340.091 -5.999 1.499 1.994 4.2 2.31 2.308 0.002 9.026 7.499 1.527
103 50:33.5 07:20.8 939361.849 8327.459 -5.999 1.499 1.997 4.2 2.307 2.305 0.002 9.015 7.49 1.525
104 09:20.9 25:55.7 947676.65 8314.801 -5.999 1.499 1.998 4.2 2.303 2.301 0.002 9 7.477 1.523
105 27:55.7 44:19.5 955980.473 8303.823 -5.999 1.499 1.994 4.2 2.298 2.296 0.002 8.983 7.463 1.52
106 46:19.5 02:34.1 964275.05 8294.577 -6 1.499 1.997 4.2 2.294 2.292 0.002 8.966 7.448 1.518
107 04:34.1 20:37.4 972558.439 8283.389 -6 1.499 1.996 4.2 2.29 2.288 0.002 8.951 7.435 1.516
108 22:37.5 38:34.0 980834.951 8276.512 -6 1.499 1.995 4.2 2.288 2.286 0.002 8.942 7.424 1.518
109 40:34.0 56:19.6 989100.624 8265.673 -6 1.499 1.994 4.2 2.284 2.282 0.002 8.929 7.411 1.518
110 58:19.7 13:55.8 997356.83 8256.206 -5.999 1.499 1.994 4.2 2.281 2.279 0.002 8.917 7.401 1.516
111 15:55.9 31:23.5 1005604.481 8247.651 -5.999 1.499 1.996 4.2 2.278 2.276 0.002 8.905 7.389 1.516
112 33:23.5 48:41.1 1013842.136 8237.655 -5.999 1.499 1.997 4.2 2.275 2.272 0.003 8.893 7.378 1.515
113 50:41.2 05:50.5 1022071.487 8229.351 -5.999 1.499 1.997 4.2 2.272 2.27 0.002 8.883 7.368 1.515
114 07:50.5 22:54.2 1030295.184 8223.697 -6 1.499 1.997 4.2 2.27 2.268 0.002 8.878 7.363 1.515
115 24:54.2 39:49.7 1038510.71 8215.526 -5.999 1.499 1.996 4.2 2.267 2.265 0.002 8.869 7.354 1.515
116 41:49.7 56:36.6 1046717.623 8206.913 -5.999 1.499 1.994 4.2 2.265 2.263 0.002 8.86 7.346 1.514
117 58:36.7 13:11.2 1054912.213 8194.59 -5.999 1.499 1.996 4.2 2.262 2.26 0.002 8.85 7.336 1.514
118 15:11.3 29:33.9 1063094.868 8182.655 -5.999 1.499 1.998 4.2 2.258 2.256 0.002 8.836 7.326 1.51
119 31:34.0 45:47.2 1071268.177 8173.309 -5.999 1.499 1.996 4.201 2.254 2.252 0.002 8.82 7.312 1.508
120 47:47.2 01:49.8 1079430.827 8162.65 -6 1.499 1.996 4.2 2.25 2.248 0.002 8.803 7.298 1.505
121 03:49.9 17:44.1 1087585.096 8154.269 -6 1.499 1.994 4.2 2.247 2.245 0.002 8.791 7.286 1.505
122 19:44.1 33:29.1 1095730.056 8144.96 -6 1.499 1.998 4.2 2.244 2.242 0.002 8.78 7.274 1.506
123 35:29.1 49:05.7 1103866.659 8136.603 -6 1.499 1.995 4.2 2.241 2.239 0.002 8.77 7.264 1.506
124 51:05.7 04:34.2 1111995.204 8128.545 -6 1.499 1.997 4.2 2.238 2.236 0.002 8.759 7.253 1.506
125 06:34.2 19:53.7 1120114.675 8119.471 -6 1.5 1.997 4.2 2.235 2.233 0.002 8.748 7.244 1.504
126 21:53.7 35:04.9 1128225.921 8111.246 -6 1.499 1.996 4.2 2.232 2.23 0.002 8.737 7.234 1.503
127 37:05.0 50:09.0 1136330.019 8104.098 -6 1.499 1.998 4.2 2.229 2.228 0.001 8.727 7.224 1.503
128 52:09.1 05:06.9 1144427.923 8097.904 -6 1.499 1.999 4.2 2.227 2.225 0.002 8.718 7.215 1.503
129 07:07.0 19:59.3 1152520.281 8092.358 -5.999 1.499 1.993 4.2 2.225 2.223 0.002 8.711 7.209 1.502
130 21:59.3 34:41.7 1160602.731 8082.45 -5.999 1.499 1.994 4.2 2.223 2.221 0.002 8.704 7.202 1.502
131 36:41.8 49:12.6 1168673.582 8070.851 -5.999 1.499 1.997 4.2 2.22 2.218 0.002 8.692 7.192 1.5
132 51:12.6 03:33.3 1176734.296 8060.714 -5.999 1.499 1.993 4.2 2.216 2.214 0.002 8.679 7.181 1.498
133 05:33.3 17:44.8 1184785.784 8051.488 -5.999 1.499 1.995 4.2 2.212 2.21 0.002 8.663 7.167 1.496
134 19:44.8 31:48.0 1192828.983 8043.199 -6 1.499 1.997 4.2 2.208 2.207 0.001 8.649 7.156 1.493
135 33:48.0 45:43.4 1200864.395 8035.412 -6 1.499 1.997 4.2 2.206 2.204 0.002 8.639 7.145 1.494
136 47:43.5 59:29.9 1208890.903 8026.508 -6 1.499 1.999 4.2 2.203 2.201 0.002 8.628 7.134 1.494
137 01:30.0 13:08.8 1216909.828 8018.925 -6 1.499 1.995 4.2 2.2 2.198 0.002 8.618 7.122 1.496
138 15:08.9 26:39.7 1224920.721 8010.893 -6 1.499 1.998 4.2 2.197 2.195 0.002 8.607 7.113 1.494
139 28:39.8 40:03.5 1232924.532 8003.811 -5.999 1.499 1.998 4.2 2.194 2.193 0.001 8.597 7.104 1.493
140 42:03.6 53:20.5 1240921.465 7996.933 -5.999 1.499 1.998 4.2 2.192 2.191 0.001 8.588 7.096 1.492
141 55:20.5 06:31.7 1248912.665 7991.2 -5.999 1.499 1.996 4.2 2.19 2.189 0.001 8.581 7.09 1.491
142 08:31.7 19:38.2 1256899.192 7986.527 -5.999 1.499 1.999 4.2 2.188 2.187 0.001 8.575 7.083 1.492
143 21:38.2 32:35.7 1264876.722 7977.53 -5.999 1.499 1.994 4.2 2.186 2.185 0.001 8.567 7.076 1.491
144 34:35.8 45:23.4 1272844.382 7967.66 -5.999 1.499 1.995 4.2 2.184 2.182 0.002 8.558 7.068 1.49
145 47:23.4 58:02.0 1280802.956 7958.574 -5.999 1.499 1.999 4.2 2.181 2.179 0.002 8.548 7.059 1.489
146 00:02.0 10:31.9 1288752.948 7949.992 -5.999 1.499 1.997 4.2 2.177 2.176 0.001 8.534 7.048 1.486
147 12:32.0 22:53.0 1296693.962 7941.014 -6 1.499 1.997 4.2 2.174 2.173 0.001 8.521 7.036 1.485
148 24:53.0 35:08.3 1304629.319 7935.357 -6 1.499 1.997 4.2 2.171 2.17 0.001 8.512 7.027 1.485
149 37:08.4 47:15.4 1312556.447 7927.128 -6 1.499 1.998 4.2 2.169 2.167 0.002 8.5 7.015 1.485
150 49:15.5 59:15.4 1320476.417 7919.97 -6 1.499 1.993 4.2 2.166 2.165 0.001 8.49 7.006 1.484
151 01:15.5 11:08.4 1328389.372 7912.955 -5.999 1.499 1.997 4.2 2.163 2.162 0.001 8.48 6.997 1.483
152 13:08.4 22:56.2 1336297.208 7907.836 -5.999 1.499 1.996 4.2 2.161 2.16 0.001 8.473 6.989 1.484
153 24:56.3 34:36.9 1344197.917 7900.709 -5.999 1.499 1.998 4.2 2.159 2.158 0.001 8.465 6.981 1.484
154 36:37.0 46:13.3 1352094.305 7896.388 -5.999 1.499 1.993 4.2 2.157 2.156 0.001 8.458 6.975 1.483
155 48:13.3 57:46.1 1359987.125 7892.82 -5.999 1.499 1.996 4.2 2.156 2.155 0.001 8.453 6.97 1.483
156 59:46.2 09:10.8 1367871.811 7884.686 -5.999 1.499 1.998 4.2 2.154 2.153 0.001 8.449 6.964 1.485
157 11:10.9 20:26.7 1375747.713 7875.902 -6 1.499 1.995 4.2 2.152 2.151 0.001 8.441 6.957 1.484
158 22:26.8 31:35.2 1383616.156 7868.443 -5.999 1.499 1.998 4.2 2.15 2.149 0.001 8.432 6.95 1.482
159 33:35.2 42:37.3 1391478.347 7862.191 -5.999 1.499 1.993 4.2 2.147 2.146 0.001 8.42 6.94 1.48
160 44:37.4 53:32.3 1399333.273 7854.926 -6 1.499 1.997 4.2 2.144 2.143 0.001 8.409 6.929 1.48
161 55:32.3 04:19.7 1407180.729 7847.456 -6 1.499 1.998 4.2 2.141 2.141 0 8.399 6.921 1.478
162 06:19.8 15:01.0 1415021.951 7841.222 -6 1.499 1.994 4.2 2.139 2.138 0.001 8.392 6.911 1.481
163 17:01.0 25:35.6 1422856.553 7834.602 -6 1.499 1.998 4.2 2.137 2.136 0.001 8.382 6.903 1.479
164 27:35.6 36:05.3 1430686.343 7829.79 -5.999 1.499 1.999 4.2 2.135 2.134 0.001 8.375 6.896 1.479
165 38:05.4 46:29.8 1438510.786 7824.443 -6 1.499 1.994 4.2 2.133 2.132 0.001 8.368 6.889 1.479
166 48:29.8 56:50.5 1446331.508 7820.722 -5.999 1.499 1.998 4.2 2.132 2.131 0.001 8.363 6.884 1.479
167 58:50.6 07:06.4 1454147.419 7815.911 -5.999 1.499 1.994 4.2 2.13 2.129 0.001 8.357 6.877 1.48
168 09:06.5 17:19.3 1461960.336 7812.917 -5.999 1.499 1.994 4.2 2.129 2.128 0.001 8.353 6.874 1.479
169 19:19.4 27:25.6 1469766.574 7806.238 -5.999 1.499 1.999 4.2 2.128 2.127 0.001 8.349 6.869 1.48
170 29:25.6 37:22.9 1477563.862 7797.288 -5.999 1.499 1.995 4.2 2.126 2.125 0.001 8.34 6.863 1.477
171 39:22.9 47:15.5 1485356.503 7792.641 -5.999 1.499 1.999 4.2 2.123 2.123 0 8.333 6.856 1.477
172 49:15.6 57:01.3 1493142.305 7785.802 -6 1.499 1.994 4.2 2.12 2.12 0 8.319 6.845 1.474
173 59:01.4 06:42.2 1500923.227 7780.922 -6 1.499 1.997 4.2 2.118 2.117 0.001 8.311 6.836 1.475
174 08:42.3 16:17.0 1508697.951 7774.724 -6 1.499 1.994 4.2 2.116 2.116 0 8.305 6.83 1.475
175 18:17.0 25:47.3 1516468.253 7770.302 -6 1.499 1.997 4.2 2.115 2.114 0.001 8.3 6.823 1.477
176 27:47.4 35:11.4 1524232.447 7764.194 -5.999 1.499 1.997 4.2 2.113 2.112 0.001 8.292 6.816 1.476
177 37:11.5 44:30.7 1531991.735 7759.288 -5.999 1.499 1.994 4.2 2.111 2.11 0.001 8.283 6.808 1.475
178 46:30.8 53:45.7 1539746.712 7754.977 -6 1.499 1.997 4.2 2.109 2.108 0.001 8.276 6.802 1.474
179 55:45.8 02:58.3 1547499.262 7752.55 -6 1.499 1.997 4.2 2.108 2.107 0.001 8.273 6.798 1.475
180 04:58.3 12:09.9 1555250.906 7751.644 -5.999 1.499 1.997 4.2 2.107 2.107 0 8.271 6.795 1.476
181 14:09.9 21:13.9 1562994.906 7744 -5.999 1.499 1.995 4.2 2.106 2.105 0.001 8.266 6.789 1.477
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182 23:14.0 30:09.4 1570730.431 7735.525 -5.999 1.499 1.998 4.201 2.104 2.104 0 8.259 6.783 1.476
183 32:09.5 38:59.2 1578460.216 7729.785 -6 1.499 1.995 4.2 2.102 2.101 0.001 8.25 6.776 1.474
184 40:59.3 47:44.6 1586185.576 7725.36 -5.999 1.499 1.996 4.2 2.099 2.098 0.001 8.239 6.766 1.473
185 49:44.6 56:25.4 1593906.385 7720.809 -6 1.499 1.997 4.2 2.096 2.096 0 8.229 6.758 1.471
186 58:25.4 05:03.0 1601623.958 7717.573 -6 1.499 1.998 4.2 2.095 2.095 0 8.225 6.751 1.474
187 07:03.0 13:34.8 1609335.828 7711.87 -6 1.499 1.996 4.2 2.094 2.093 0.001 8.219 6.744 1.475
188 15:34.8 22:01.0 1617042.023 7706.195 -5.999 1.499 1.999 4.2 2.092 2.092 0 8.213 6.738 1.475
189 24:01.0 30:22.3 1624743.288 7701.265 -5.999 1.499 1.998 4.2 2.09 2.09 0 8.207 6.733 1.474
190 32:22.4 38:40.1 1632441.097 7697.809 -5.999 1.499 1.999 4.2 2.089 2.089 0 8.2 6.727 1.473
191 40:40.2 46:54.1 1640135.145 7694.048 -6 1.499 1.996 4.2 2.087 2.087 0 8.195 6.721 1.474
192 48:54.2 55:06.1 1647827.099 7691.954 -5.999 1.499 1.998 4.2 2.086 2.086 0 8.191 6.718 1.473
193 57:06.1 03:14.6 1655515.628 7688.529 -5.999 1.499 1.996 4.2 2.086 2.085 0.001 8.19 6.715 1.475
194 05:14.7 11:14.2 1663195.227 7679.599 -5.999 1.499 1.997 4.2 2.084 2.084 0 8.182 6.708 1.474
195 13:14.3 19:06.9 1670867.939 7672.712 -5.999 1.499 1.997 4.2 2.082 2.081 0.001 8.174 6.699 1.475
196 21:07.0 26:55.5 1678536.477 7668.538 -5.999 1.499 1.997 4.2 2.079 2.079 0 8.165 6.693 1.472
197 28:55.5 34:39.4 1686200.392 7663.915 -6 1.499 1.999 4.2 2.077 2.077 0 8.156 6.685 1.471
198 36:39.4 42:19.4 1693860.434 7660.042 -6 1.499 1.994 4.2 2.076 2.076 0 8.151 6.679 1.472
199 44:19.4 49:57.7 1701518.726 7658.292 -6 1.499 1.997 4.2 2.075 2.075 0 8.148 6.674 1.474
200 51:57.8 57:31.6 1709172.624 7653.898 -6 1.499 1.993 4.2 2.074 2.073 0.001 8.142 6.668 1.474
201 59:31.7 05:01.4 1716822.441 7649.817 -5.999 1.499 1.995 4.2 2.073 2.073 0 8.139 6.664 1.475
202 07:01.5 12:27.2 1724468.184 7645.743 -5.999 1.499 1.994 4.2 2.071 2.071 0 8.134 6.66 1.474
203 14:27.3 19:50.7 1732111.737 7643.553 -6 1.499 1.993 4.2 2.07 2.07 0 8.13 6.657 1.473
204 21:50.7 27:12.0 1739752.994 7641.257 -5.999 1.499 1.997 4.2 2.069 2.069 0 8.126 6.652 1.474
205 29:12.1 34:30.6 1747391.564 7638.57 -6 1.499 1.994 4.2 2.068 2.068 0 8.122 6.648 1.474
206 36:30.7 41:42.5 1755023.509 7631.945 -5.999 1.499 1.993 4.2 2.067 2.067 0 8.118 6.645 1.473
207 43:42.5 48:47.0 1762648.003 7624.494 -6 1.499 1.997 4.2 2.065 2.066 -0.001 8.112 6.639 1.473
208 50:47.1 55:49.0 1770269.986 7621.983 -5.999 1.499 1.997 4.2 2.063 2.063 0 8.104 6.632 1.472
209 57:49.1 02:46.7 1777887.746 7617.76 -6 1.499 1.997 4.2 2.061 2.061 0 8.096 6.625 1.471
210 04:46.8 09:41.1 1785502.071 7614.325 -6 1.499 1.997 4.2 2.06 2.06 0 8.09 6.62 1.47
211 11:41.2 16:31.3 1793112.31 7610.239 -6 1.499 1.994 4.2 2.059 2.059 0 8.085 6.613 1.472
212 18:31.3 23:18.2 1800719.206 7606.896 -6 1.499 1.999 4.2 2.057 2.057 0 8.08 6.605 1.475
213 25:18.3 30:01.4 1808322.359 7603.153 -5.999 1.499 1.994 4.2 2.056 2.056 0 8.076 6.603 1.473
214 32:01.4 36:43.9 1815924.918 7602.559 -5.999 1.499 1.998 4.2 2.056 2.056 0 8.075 6.601 1.474
215 38:44.0 43:25.0 1823525.98 7601.062 -5.999 1.499 1.996 4.2 2.056 2.056 0 8.074 6.6 1.474
216 45:25.0 50:01.9 1831122.941 7596.961 -5.999 1.499 1.999 4.2 2.054 2.054 0 8.069 6.596 1.473
217 52:02.0 56:37.0 1838717.961 7595.02 -5.999 1.499 1.997 4.2 2.053 2.053 0 8.066 6.592 1.474
218 58:37.1 03:06.9 1846307.922 7589.961 -5.999 1.499 1.998 4.2 2.052 2.052 0 8.062 6.588 1.474
219 05:07.0 09:30.0 1853891.037 7583.115 -5.999 1.499 1.995 4.2 2.051 2.051 0 8.057 6.583 1.474
220 11:30.1 15:48.4 1861469.425 7578.388 -5.999 1.499 1.999 4.2 2.049 2.049 0 8.05 6.579 1.471
221 17:48.5 22:02.8 1869043.842 7574.417 -6 1.499 1.994 4.2 2.047 2.047 0 8.041 6.572 1.469
222 24:02.9 28:14.6 1876615.641 7571.799 -6 1.499 1.996 4.2 2.045 2.045 0 8.034 6.564 1.47
223 30:14.7 34:22.7 1884183.704 7568.063 -6 1.499 1.996 4.2 2.044 2.044 0 8.03 6.559 1.471
224 36:22.8 40:28.9 1891749.919 7566.215 -6 1.499 1.996 4.2 2.044 2.043 0.001 8.028 6.554 1.474
225 42:28.9 46:31.6 1899312.611 7562.692 -5.999 1.5 1.996 4.2 2.043 2.043 0 8.024 6.552 1.472
226 48:31.6 52:32.4 1906873.391 7560.78 -5.999 1.499 1.998 4.2 2.042 2.042 0 8.021 6.548 1.473
227 54:32.5 58:31.3 1914432.336 7558.945 -5.999 1.499 1.999 4.2 2.041 2.041 0 8.018 6.545 1.473
228 00:31.4 04:30.0 1921991.034 7558.698 -5.999 1.499 1.993 4.2 2.04 2.041 -0.001 8.016 6.543 1.473
229 06:30.1 10:28.3 1929549.295 7558.261 -5.999 1.499 1.997 4.2 2.04 2.04 0 8.015 6.541 1.474
230 12:28.4 16:20.8 1937101.754 7552.459 -5.999 1.499 1.996 4.2 2.04 2.04 0 8.014 6.539 1.475
231 18:20.8 22:05.6 1944646.559 7544.805 -6 1.499 1.993 4.2 2.038 2.038 0 8.008 6.535 1.473
232 24:05.6 27:46.1 1952187.08 7540.521 -6 1.499 1.999 4.2 2.036 2.036 0 8.001 6.528 1.473
233 29:46.1 33:22.3 1959723.288 7536.208 -5.999 1.499 1.994 4.2 2.034 2.034 0 7.991 6.52 1.471
234 35:22.4 38:55.6 1967256.599 7533.311 -6 1.499 1.998 4.2 2.032 2.032 0 7.983 6.515 1.468
235 40:55.6 44:26.9 1974787.929 7531.33 -6 1.499 1.997 4.2 2.031 2.032 -0.001 7.981 6.51 1.471
236 46:26.9 49:55.9 1982316.919 7528.99 -6 1.499 1.996 4.2 2.031 2.031 0 7.979 6.506 1.473
237 51:55.9 55:20.7 1989841.708 7524.789 -5.999 1.499 1.996 4.2 2.03 2.03 0 7.974 6.5 1.474
238 57:20.7 00:43.5 1997364.463 7522.755 -5.999 1.499 1.999 4.2 2.029 2.029 0 7.97 6.497 1.473
239 02:43.6 06:05.2 2004886.169 7521.706 -5.999 1.499 1.995 4.2 2.028 2.028 0 7.968 6.495 1.473
240 08:05.2 11:26.2 2012407.167 7520.998 -5.999 1.499 1.996 4.2 2.028 2.028 0 7.967 6.495 1.472
241 13:26.3 16:47.5 2019928.546 7521.379 -6 1.499 1.994 4.2 2.028 2.028 0 7.967 6.493 1.474
242 18:47.6 22:03.9 2027444.857 7516.311 -5.999 1.499 1.997 4.2 2.027 2.027 0 7.965 6.491 1.474
243 24:04.0 27:15.1 2034956.067 7511.21 -5.999 1.499 1.996 4.2 2.026 2.026 0 7.962 6.489 1.473
244 29:15.1 32:22.6 2042463.555 7507.488 -6 1.499 1.995 4.2 2.025 2.025 0 7.958 6.485 1.473
245 34:22.6 37:26.7 2049967.737 7504.182 -5.999 1.499 1.996 4.2 2.023 2.024 -0.001 7.951 6.481 1.47
246 39:26.8 42:26.0 2057467.025 7499.288 -6 1.499 1.996 4.2 2.021 2.022 -0.001 7.943 6.473 1.47
247 44:26.1 47:22.7 2064963.674 7496.649 -6 1.499 1.995 4.2 2.02 2.02 0 7.938 6.468 1.47
248 49:22.8 52:16.7 2072457.729 7494.055 -6 1.499 1.994 4.2 2.019 2.019 0 7.934 6.462 1.472
249 54:16.8 57:08.4 2079949.423 7491.694 -6 1.499 1.998 4.2 2.018 2.018 0 7.931 6.458 1.473
250 59:08.5 01:58.0 2087438.992 7489.569 -5.999 1.499 1.997 4.2 2.017 2.018 -0.001 7.927 6.455 1.472
251 03:58.0 06:45.0 2094925.984 7486.992 -6 1.499 1.998 4.2 2.016 2.016 0 7.923 6.45 1.473
252 08:45.0 11:30.6 2102411.571 7485.587 -5.999 1.499 1.997 4.2 2.016 2.016 0 7.921 6.449 1.472
253 11:30.6 27:29.7 2114170.672 7405.587 -1.5 1.499 1.997 4.2 2.015 2.034 -0.019 7.92 7.245 0.675
254 27:29.7 44:50.5 2126011.533 7385.587 -1.5 1.499 1.999 4.2 2.044 2.043 0.001 8.05 7.294 0.756
255 44:50.7 02:15.7 2137856.687 7445.587 -1.5 1.499 1.998 4.2 2.044 2.044 0 8.049 7.299 0.75
256 02:15.7 03:15.8 2137916.822 7332.587 -1.5 1.499 1.998 4.2 2.044 2.044 0 8.049 7.299 0.75
258 53:12.0 08:42.3 2149657.116 7400.587 -1.5 1.499 1.998 4.2 2.002 2.023 -0.021 7.934 7.179 0.755
259 08:42.3 24:32.9 2161407.75 7289.587 -1.5 1.499 1.998 4.2 2.028 2.025 0.003 8.003 7.187 0.816
260 24:33.0 40:05.9 2173140.758 7435.587 -1.5 1.499 1.998 4.2 2.023 2.021 0.002 7.981 7.176 0.805
261 40:05.9 58:49.2 2188664.059 7555.587 -5.999 1.499 1.995 4.2 2.023 2.021 0.002 15.892 7.176 8.716
262 00:49.3 03:06.4 2196121.218 7457.159 -5.999 1.499 1.993 4.2 2.01 2.009 0.001 7.911 6.346 1.565
263 05:06.5 07:26.5 2203581.277 7460.059 -5.999 1.499 1.997 4.2 2.011 2.01 0.001 7.914 6.357 1.557
264 09:26.5 11:47.5 2211042.304 7461.027 -5.999 1.499 1.993 4.2 2.011 2.01 0.001 7.912 6.366 1.546
265 13:47.5 16:10.9 2218505.768 7463.464 -5.999 1.499 1.998 4.2 2.011 2.011 0 7.914 6.375 1.539
266 18:11.0 20:35.7 2225970.54 7464.772 -5.999 1.499 1.996 4.2 2.011 2.011 0 7.913 6.382 1.531
267 22:35.8 25:03.0 2233437.866 7467.326 -5.999 1.499 1.998 4.2 2.012 2.012 0 7.914 6.391 1.523
268 27:03.1 29:30.7 2240905.475 7467.609 -5.999 1.499 1.993 4.2 2.012 2.012 0 7.913 6.397 1.516
269 31:30.7 33:59.1 2248373.958 7468.483 -5.999 1.499 1.999 4.2 2.012 2.012 0 7.913 6.401 1.512
270 35:59.2 38:27.5 2255842.285 7468.327 -5.999 1.499 1.999 4.2 2.012 2.012 0 7.911 6.406 1.505
271 40:27.5 42:55.9 2263310.738 7468.453 -5.999 1.499 1.994 4.2 2.012 2.012 0 7.91 6.409 1.501
272 44:56.0 47:23.7 2270778.543 7467.805 -5.999 1.499 1.993 4.2 2.011 2.011 0 7.908 6.41 1.498
273 49:23.8 51:50.2 2278245 7466.457 -5.999 1.499 1.996 4.2 2.01 2.01 0 7.905 6.409 1.496
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274 53:50.2 56:14.1 2285708.931 7463.931 -5.999 1.499 1.995 4.2 2.01 2.01 0 7.902 6.41 1.492
275 58:14.2 00:37.1 2293171.966 7463.035 -5.999 1.499 1.999 4.2 2.009 2.009 0 7.9 6.408 1.492
276 02:37.2 04:57.5 2300632.297 7460.331 -5.999 1.499 1.998 4.2 2.008 2.009 -0.001 7.896 6.408 1.488
277 06:57.5 09:17.1 2308091.911 7459.614 -5.999 1.499 1.997 4.2 2.008 2.008 0 7.895 6.405 1.49
278 11:17.1 13:35.0 2315549.815 7457.904 -5.999 1.499 1.995 4.2 2.007 2.008 -0.001 7.892 6.406 1.486
279 15:35.1 17:50.3 2323005.155 7455.34 -5.999 1.499 1.995 4.2 2.007 2.007 0 7.889 6.404 1.485
280 19:50.4 22:02.9 2330457.771 7452.616 -5.999 1.499 1.996 4.2 2.006 2.006 0 7.887 6.402 1.485
281 24:03.0 26:13.4 2337908.259 7450.488 -5.999 1.499 1.993 4.2 2.005 2.005 0 7.882 6.398 1.484
282 28:13.5 30:21.1 2345355.885 7447.626 -5.999 1.499 1.995 4.2 2.004 2.004 0 7.876 6.393 1.483
283 32:21.1 34:25.8 2352800.626 7444.741 -5.999 1.499 1.993 4.2 2.003 2.003 0 7.873 6.391 1.482
284 36:25.9 38:27.5 2360242.311 7441.685 -5.999 1.499 1.996 4.2 2.002 2.002 0 7.869 6.387 1.482
285 40:27.5 42:25.9 2367680.745 7438.434 -5.999 1.499 1.997 4.2 2.001 2.001 0 7.865 6.384 1.481
286 44:26.0 46:21.8 2375116.612 7435.867 -5.999 1.499 1.996 4.2 2 2 0 7.862 6.381 1.481
287 48:21.8 50:14.9 2382549.767 7433.155 -5.999 1.499 1.999 4.2 1.999 1.999 0 7.858 6.379 1.479
288 52:15.0 54:05.1 2389979.971 7430.204 -5.999 1.499 1.995 4.2 1.998 1.998 0 7.855 6.374 1.481
289 56:05.2 57:52.7 2397407.499 7427.528 -5.999 1.499 1.998 4.2 1.997 1.998 -0.001 7.851 6.372 1.479
290 59:52.7 01:37.9 2404832.744 7425.245 -5.999 1.499 1.997 4.2 1.996 1.997 -0.001 7.848 6.368 1.48
291 03:38.0 05:19.6 2412254.38 7421.636 -5.999 1.499 1.996 4.2 1.995 1.996 -0.001 7.844 6.364 1.48
292 07:19.6 08:59.7 2419674.5 7420.12 -5.999 1.499 1.997 4.2 1.994 1.995 -0.001 7.841 6.362 1.479
293 10:59.7 12:36.5 2427091.371 7416.871 -5.999 1.499 1.998 4.2 1.993 1.993 0 7.836 6.357 1.479
294 14:36.6 16:10.5 2434505.347 7413.976 -5.999 1.499 1.999 4.2 1.992 1.992 0 7.832 6.353 1.479
295 18:10.6 19:40.2 2441915.032 7409.685 -5.999 1.499 1.997 4.2 1.991 1.991 0 7.827 6.348 1.479
296 21:40.3 23:08.1 2449322.905 7407.873 -5.999 1.499 1.997 4.2 1.99 1.99 0 7.823 6.344 1.479
297 25:08.1 26:33.5 2456728.356 7405.451 -5.999 1.499 1.993 4.2 1.989 1.99 -0.001 7.819 6.342 1.477
298 28:33.6 29:56.2 2464130.996 7402.64 -5.999 1.499 1.995 4.2 1.988 1.988 0 7.816 6.336 1.48
299 31:56.2 33:15.3 2471530.086 7399.09 -5.999 1.499 1.999 4.2 1.987 1.987 0 7.811 6.332 1.479
300 35:15.3 36:32.1 2478926.935 7396.849 -5.999 1.499 1.997 4.2 1.986 1.987 -0.001 7.809 6.329 1.48
301 38:32.2 39:45.8 2486320.666 7393.731 -5.999 1.499 1.993 4.2 1.985 1.986 -0.001 7.804 6.326 1.478
302 41:45.9 42:57.5 2493712.321 7391.655 -5.999 1.499 1.997 4.2 1.984 1.985 -0.001 7.802 6.322 1.48
303 44:57.6 46:06.0 2501100.794 7388.473 -5.999 1.499 1.995 4.2 1.983 1.984 -0.001 7.797 6.32 1.477
304 48:06.0 49:12.3 2508487.157 7386.363 -5.999 1.499 1.995 4.2 1.982 1.982 0 7.793 6.315 1.478
305 51:12.4 52:14.9 2515869.738 7382.581 -5.999 1.499 1.999 4.2 1.98 1.981 -0.001 7.787 6.309 1.478
306 54:15.0 55:14.8 2523249.639 7379.901 -5.999 1.499 1.995 4.2 1.98 1.98 0 7.784 6.306 1.478
307 57:14.9 58:12.4 2530627.252 7377.613 -5.999 1.499 1.994 4.2 1.978 1.979 -0.001 7.78 6.302 1.478
308 00:12.5 01:07.1 2538001.964 7374.712 -5.999 1.499 1.995 4.2 1.978 1.978 0 7.777 6.299 1.478
309 03:07.2 03:58.5 2545373.352 7371.388 -5.999 1.499 1.996 4.2 1.977 1.977 0 7.773 6.294 1.479
310 05:58.6 06:46.3 2552741.142 7367.79 -5.999 1.499 1.994 4.2 1.975 1.976 -0.001 7.768 6.289 1.479
311 08:46.4 09:31.4 2560106.19 7365.048 -5.999 1.499 1.999 4.2 1.974 1.975 -0.001 7.764 6.284 1.48
312 11:31.4 12:13.6 2567468.412 7362.222 -5.999 1.499 1.996 4.2 1.974 1.974 0 7.761 6.283 1.478
313 14:13.6 14:52.6 2574827.415 7359.003 -5.999 1.499 1.994 4.2 1.972 1.973 -0.001 7.757 6.278 1.479
314 16:52.6 17:29.3 2582184.089 7356.674 -5.999 1.499 1.998 4.2 1.972 1.972 0 7.753 6.275 1.478
315 19:29.3 20:02.1 2589536.881 7352.792 -5.999 1.499 1.994 4.2 1.97 1.971 -0.001 7.749 6.271 1.478
316 22:02.1 22:33.2 2596888.052 7351.171 -5.999 1.499 1.994 4.2 1.97 1.97 0 7.746 6.268 1.478
317 24:33.3 25:01.1 2604235.965 7347.913 -5.999 1.499 1.997 4.2 1.969 1.969 0 7.742 6.264 1.478
318 27:01.2 27:26.0 2611580.849 7344.884 -5.999 1.499 1.994 4.2 1.968 1.968 0 7.738 6.259 1.479
319 29:26.1 29:48.6 2618923.405 7342.556 -5.999 1.499 1.998 4.2 1.967 1.967 0 7.735 6.255 1.48
320 31:48.6 32:07.9 2626262.77 7339.365 -5.999 1.499 1.999 4.2 1.966 1.966 0 7.731 6.252 1.479
321 34:08.0 34:23.9 2633598.768 7335.998 -5.999 1.499 1.999 4.2 1.965 1.965 0 7.727 6.248 1.479
322 36:24.0 36:37.3 2640932.096 7333.328 -5.999 1.499 1.997 4.2 1.964 1.964 0 7.724 6.244 1.48
323 38:37.3 38:47.8 2648262.602 7330.506 -5.999 1.499 1.994 4.2 1.963 1.964 -0.001 7.719 6.241 1.478
324 40:47.8 40:56.0 2655590.856 7328.254 -5.999 1.499 1.995 4.2 1.962 1.963 -0.001 7.716 6.239 1.477
325 42:56.1 42:49.5 2662904.357 7313.501 -5.999 1.499 1.995 4.2 1.958 1.958 0 7.699 6.21 1.489
326 44:49.6 44:42.1 2670216.96 7312.603 -5.999 1.499 1.995 4.2 1.958 1.958 0 7.702 6.211 1.491
327 46:42.2 46:31.4 2677526.208 7309.248 -5.999 1.499 1.999 4.2 1.957 1.957 0 7.698 6.209 1.489
328 48:31.5 48:18.2 2684833.054 7306.846 -5.999 1.499 1.997 4.2 1.956 1.956 0 7.693 6.203 1.49
329 50:18.3 50:03.5 2692138.295 7305.241 -5.999 1.499 1.995 4.2 1.955 1.956 -0.001 7.692 6.202 1.49
330 52:03.5 51:45.8 2699440.636 7302.341 -5.999 1.499 1.996 4.2 1.954 1.955 -0.001 7.688 6.199 1.489
331 53:45.9 53:26.4 2706741.249 7300.613 -5.999 1.499 1.994 4.2 1.953 1.954 -0.001 7.685 6.197 1.488
332 55:26.5 55:07.9 2714042.756 7301.507 -5.999 1.499 1.996 4.2 1.953 1.954 -0.001 7.685 6.195 1.49
333 57:08.0 56:50.9 2721345.693 7302.937 -5.999 1.499 1.996 4.2 1.954 1.954 0 7.686 6.195 1.491
334 58:50.9 58:32.0 2728646.872 7301.179 -5.999 1.499 1.998 4.2 1.954 1.954 0 7.687 6.196 1.491
335 00:32.1 00:07.3 2735942.084 7295.212 -5.999 1.499 1.999 4.2 1.953 1.954 -0.001 7.684 6.194 1.49
336 02:07.3 01:37.5 2743232.356 7290.272 -5.999 1.499 1.999 4.2 1.952 1.952 0 7.678 6.189 1.489
337 03:37.6 03:04.0 2750518.788 7286.432 -5.999 1.499 1.995 4.2 1.949 1.95 -0.001 7.669 6.185 1.484
338 05:04.0 04:28.4 2757803.266 7284.478 -6 1.499 1.995 4.2 1.948 1.949 -0.001 7.664 6.181 1.483
339 06:28.5 05:50.7 2765085.494 7282.228 -6 1.499 1.999 4.2 1.947 1.948 -0.001 7.66 6.174 1.486
340 07:50.7 07:11.5 2772366.301 7280.807 -6 1.499 1.995 4.2 1.946 1.947 -0.001 7.657 6.17 1.487
341 09:11.5 08:30.6 2779645.428 7279.127 -5.999 1.499 1.997 4.2 1.946 1.946 0 7.656 6.168 1.488
342 10:30.7 09:47.7 2786922.518 7277.09 -5.999 1.499 1.999 4.2 1.945 1.946 -0.001 7.653 6.167 1.486
343 11:47.8 11:06.0 2794200.785 7278.267 -5.999 1.499 1.997 4.2 1.945 1.946 -0.001 7.653 6.166 1.487
344 13:06.0 12:23.6 2801478.45 7277.665 -5.999 1.499 1.997 4.2 1.945 1.946 -0.001 7.653 6.167 1.486
345 14:23.7 13:38.9 2808753.754 7275.304 -5.999 1.499 1.994 4.2 1.945 1.946 -0.001 7.655 6.166 1.489
346 15:39.0 14:45.9 2816020.728 7266.974 -5.999 1.499 1.997 4.2 1.944 1.945 -0.001 7.649 6.163 1.486
347 16:46.0 15:49.8 2823284.589 7263.861 -5.999 1.499 1.995 4.2 1.942 1.943 -0.001 7.641 6.158 1.483
348 17:49.8 16:50.5 2830545.315 7260.726 -6 1.499 1.998 4.2 1.94 1.941 -0.001 7.632 6.151 1.481
349 18:50.5 17:49.8 2837804.638 7259.323 -6 1.499 1.999 4.2 1.939 1.94 -0.001 7.629 6.147 1.482
350 19:49.9 18:47.3 2845062.078 7257.44 -6 1.499 1.997 4.2 1.938 1.939 -0.001 7.627 6.142 1.485
351 20:47.3 19:42.3 2852317.154 7255.076 -5.999 1.499 1.998 4.2 1.938 1.938 0 7.624 6.138 1.486
352 21:42.4 20:35.9 2859570.726 7253.572 -5.999 1.499 1.998 4.2 1.937 1.938 -0.001 7.622 6.137 1.485
353 22:35.9 21:28.7 2866823.476 7252.75 -5.999 1.499 1.997 4.2 1.937 1.937 0 7.62 6.135 1.485
354 23:28.7 22:23.1 2874077.904 7254.428 -5.999 1.499 1.998 4.2 1.937 1.937 0 7.621 6.134 1.487
355 24:23.1 23:15.1 2881329.882 7251.978 -5.999 1.499 1.998 4.2 1.936 1.937 -0.001 7.62 6.133 1.487
356 25:15.1 24:00.9 2888575.73 7245.848 -5.999 1.499 1.997 4.2 1.936 1.937 -0.001 7.619 6.132 1.487
357 26:01.0 24:41.6 2895816.41 7240.68 -5.999 1.499 1.997 4.2 1.935 1.935 0 7.613 6.129 1.484
358 26:41.7 25:18.5 2903053.274 7236.864 -5.999 1.499 1.997 4.2 1.932 1.933 -0.001 7.604 6.121 1.483
359 27:18.5 25:51.9 2910286.701 7233.427 -6 1.499 1.999 4.2 1.93 1.931 -0.001 7.596 6.116 1.48
360 27:51.9 26:24.9 2917519.675 7232.974 -6 1.499 1.998 4.2 1.93 1.931 -0.001 7.595 6.112 1.483
361 28:24.9 26:55.3 2924750.126 7230.451 -6 1.499 1.997 4.2 1.929 1.93 -0.001 7.592 6.106 1.486
362 28:55.4 27:23.3 2931978.162 7228.036 -5.999 1.499 1.998 4.2 1.929 1.929 0 7.589 6.102 1.487
363 29:23.4 27:48.7 2939203.546 7225.384 -5.999 1.499 1.995 4.2 1.928 1.928 0 7.585 6.1 1.485
364 29:48.7 28:14.0 2946428.834 7225.288 -5.999 1.499 1.995 4.2 1.927 1.928 -0.001 7.585 6.098 1.487
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365 30:14.1 28:39.6 2953654.398 7225.564 -5.999 1.499 1.998 4.2 1.927 1.928 -0.001 7.584 6.097 1.487
366 30:39.6 29:05.6 2960880.428 7226.03 -5.999 1.499 1.994 4.2 1.928 1.928 0 7.586 6.099 1.487
367 31:05.7 29:26.0 2968100.816 7220.388 -5.999 1.499 1.997 4.2 1.927 1.928 -0.001 7.586 6.097 1.489
368 31:26.0 29:38.9 2975313.74 7212.924 -5.999 1.499 1.996 4.2 1.926 1.927 -0.001 7.58 6.093 1.487
369 31:39.0 29:49.6 2982524.424 7210.684 -5.999 1.499 1.997 4.2 1.924 1.925 -0.001 7.573 6.087 1.486
370 31:49.7 29:57.7 2989732.509 7208.085 -5.999 1.499 1.998 4.2 1.922 1.923 -0.001 7.565 6.082 1.483
371 31:57.8 30:02.6 2996937.429 7204.92 -6 1.499 1.994 4.2 1.921 1.922 -0.001 7.559 6.078 1.481
372 32:02.6 30:06.3 3004141.085 7203.656 -6 1.499 1.994 4.2 1.92 1.921 -0.001 7.558 6.071 1.487
373 32:06.3 30:08.5 3011343.278 7202.193 -5.999 1.499 1.998 4.2 1.92 1.92 0 7.557 6.069 1.488
374 32:08.5 30:07.4 3018542.214 7198.936 -5.998 1.499 1.995 4.2 1.919 1.92 -0.001 7.552 6.065 1.487
375 32:07.5 30:06.7 3025741.505 7199.291 -5.999 1.499 1.996 4.2 1.919 1.919 0 7.552 6.065 1.487
376 32:06.7 30:05.1 3032939.965 7198.46 -5.999 1.499 1.996 4.2 1.918 1.919 -0.001 7.549 6.063 1.486
377 32:05.2 30:04.3 3040139.09 7199.125 -5.999 1.499 1.995 4.2 1.918 1.919 -0.001 7.55 6.062 1.488
378 32:04.3 30:02.8 3047337.632 7198.542 -5.999 1.499 1.997 4.2 1.918 1.919 -0.001 7.55 6.062 1.488
379 32:02.9 29:55.9 3054530.697 7193.065 -5.999 1.499 1.997 4.2 1.918 1.918 0 7.55 6.06 1.49
380 31:55.9 29:43.1 3061717.97 7187.273 -5.999 1.499 1.995 4.2 1.916 1.917 -0.001 7.544 6.056 1.488
381 31:43.2 29:27.5 3068902.329 7184.359 -5.999 1.499 1.997 4.2 1.915 1.916 -0.001 7.538 6.051 1.487
382 31:27.5 29:09.2 3076084.072 7181.743 -5.999 1.499 1.999 4.2 1.913 1.913 0 7.529 6.045 1.484
383 31:09.3 28:48.3 3083263.083 7179.011 -6 1.499 1.996 4.2 1.911 1.912 -0.001 7.524 6.041 1.483
384 30:48.3 28:26.3 3090441.13 7178.047 -6 1.499 1.997 4.2 1.911 1.912 -0.001 7.522 6.037 1.485
385 30:26.3 27:58.7 3097613.476 7172.346 -6 1.499 1.994 4.2 1.909 1.91 -0.001 7.515 6.028 1.487
386 27:58.7 35:36.6 3108871.455 11257.979 -1.5 1.499 1.994 4.2 1.909 1.93 -0.021 7.513 6.853 0.66
387 35:36.7 44:24.0 3120198.833 11327.378 -1.5 1.499 1.999 4.2 1.936 1.936 0 7.641 6.885 0.756
388 44:24.0 53:02.6 3131517.421 11318.588 -1.5 1.499 1.998 4.2 1.932 1.933 -0.001 7.624 6.878 0.746
389 53:02.6 54:02.8 3131577.577 60.156 0 0 0 2.797 0 0 0 0 0 0
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Cycle_IndexStart_TimeEnd_Time Test_Time (s)Min_Current (A)Max_Current (A)Min_Voltage (V)Max_Voltage (V)Charge_Capacity (Ah) Discharge_Capacity (Ah) Capacity Loss (Ah) Charge_Energy (Wh)Discharge_Energy (Wh) Energy Loss (Wh)
1 12:57.0 38:44.5 15957.47 -1.5 1.499 1.999 4.2 2.83 2.929 -0.099 10.942 10.437 0.505
2 38:44.5 07:34.4 32087.37 -1.5 1.5 1.999 4.2 2.926 2.924 0.002 11.242 10.428 0.814
3 07:34.4 35:54.1 48187.08 -1.5 1.5 1.999 4.2 2.92 2.916 0.004 11.217 10.409 0.808
4 35:54.1 24:59.8 69132.76 -6.001 1.499 1.998 4.2 5.796 5.767 0.029 22.286 19.076 3.21
5 26:59.8 13:23.3 79236.32 -6.001 1.499 1.999 4.2 2.875 2.868 0.007 11.047 9.501 1.546
6 15:23.4 01:24.4 89317.44 -6.001 1.5 1.999 4.2 2.865 2.86 0.005 11.012 9.486 1.526
7 03:24.5 49:07.1 99380.09 -6.001 1.499 1.999 4.2 2.857 2.852 0.005 10.982 9.473 1.509
8 51:07.1 36:35.1 109428.1 -6.001 1.499 1.998 4.2 2.849 2.845 0.004 10.955 9.459 1.496
9 38:35.2 23:47.5 119460.5 -6.001 1.499 1.997 4.2 2.842 2.838 0.004 10.928 9.447 1.481

10 25:47.6 10:42.3 129475.3 -6.001 1.499 1.998 4.2 2.835 2.832 0.003 10.902 9.432 1.47
11 12:42.3 57:19.3 139472.3 -6.001 1.499 1.999 4.2 2.828 2.825 0.003 10.877 9.416 1.461
12 59:19.3 43:39.1 149452.1 -6.001 1.499 1.999 4.2 2.821 2.818 0.003 10.853 9.4 1.453
13 45:39.1 29:40.7 159413.7 -6.001 1.499 1.999 4.2 2.815 2.812 0.003 10.829 9.384 1.445
14 31:40.7 15:25.2 169358.2 -6.001 1.499 1.998 4.2 2.808 2.806 0.002 10.806 9.368 1.438
15 17:25.3 00:52.7 179285.7 -6.001 1.499 1.999 4.2 2.802 2.801 0.001 10.785 9.355 1.43
16 02:52.7 46:04.7 189197.7 -6.001 1.5 1.997 4.2 2.797 2.796 0.001 10.766 9.343 1.423
17 48:04.7 31:04.5 199097.5 -6.001 1.499 1.999 4.2 2.792 2.79 0.002 10.749 9.331 1.418
18 33:04.6 15:50.0 208983 -6.001 1.499 1.998 4.2 2.787 2.786 0.001 10.73 9.319 1.411
19 17:50.0 00:22.2 218855.2 -6.001 1.5 1.998 4.2 2.782 2.781 0.001 10.712 9.306 1.406
20 02:22.3 44:43.7 228716.7 -6.001 1.499 1.999 4.2 2.777 2.776 0.001 10.695 9.294 1.401
21 46:43.7 28:50.8 238563.8 -6.001 1.5 1.999 4.2 2.772 2.772 0 10.679 9.282 1.397
22 30:50.9 12:45.4 248398.4 -6.001 1.499 1.998 4.2 2.768 2.767 0.001 10.662 9.271 1.391
23 14:45.5 56:17.0 258210 -6.001 1.499 1.998 4.2 2.763 2.762 0.001 10.645 9.248 1.397
24 58:17.0 39:33.7 268006.7 -6.001 1.499 1.998 4.2 2.758 2.758 0 10.63 9.235 1.395
25 41:33.7 22:37.9 277790.9 -6.001 1.5 1.999 4.2 2.754 2.754 0 10.614 9.224 1.39
26 24:38.0 05:32.8 287565.8 -6.001 1.499 1.999 4.2 2.75 2.751 -0.001 10.602 9.216 1.386
27 07:32.9 48:15.9 297328.9 -6.001 1.5 1.999 4.2 2.747 2.747 0 10.589 9.205 1.384
28 50:15.9 30:49.7 307082.7 -6.001 1.5 1.998 4.2 2.743 2.744 -0.001 10.576 9.196 1.38
29 32:49.8 13:12.6 316825.6 -6.001 1.499 1.996 4.2 2.74 2.74 0 10.564 9.186 1.378
30 15:12.6 55:25.8 326558.8 -6.001 1.499 1.998 4.2 2.736 2.737 -0.001 10.551 9.176 1.375
31 57:25.9 37:29.1 336282.1 -6.001 1.5 1.996 4.2 2.733 2.733 0 10.539 9.167 1.372
32 39:29.2 19:22.1 345995.1 -6.001 1.499 1.996 4.2 2.73 2.73 0 10.528 9.157 1.371
33 21:22.2 01:05.4 355698.4 -6.001 1.499 1.998 4.2 2.726 2.727 -0.001 10.516 9.149 1.367
34 03:05.4 42:39.4 365392.4 -6.001 1.5 1.997 4.2 2.723 2.724 -0.001 10.505 9.14 1.365
35 44:39.5 24:03.8 375076.8 -6.001 1.5 1.999 4.2 2.72 2.721 -0.001 10.494 9.131 1.363
36 26:03.9 05:19.5 384752.5 -6.001 1.5 1.996 4.2 2.717 2.718 -0.001 10.483 9.124 1.359
37 07:19.6 46:27.5 394420.5 -6.001 1.499 1.999 4.2 2.714 2.715 -0.001 10.473 9.115 1.358
38 48:27.5 27:26.0 404079 -6.001 1.499 1.998 4.2 2.711 2.713 -0.002 10.462 9.108 1.354
39 29:26.0 08:16.4 413729.4 -6.001 1.499 1.997 4.2 2.709 2.71 -0.001 10.453 9.101 1.352
40 10:16.4 48:56.9 423369.9 -6.001 1.5 1.996 4.2 2.706 2.707 -0.001 10.443 9.093 1.35
41 50:56.9 29:32.6 433005.6 -6.001 1.499 1.999 4.2 2.703 2.705 -0.002 10.434 9.085 1.349
42 31:32.7 10:00.8 442633.8 -6.001 1.499 1.997 4.2 2.701 2.702 -0.001 10.425 9.078 1.347
43 12:00.9 50:19.2 452252.2 -6.001 1.499 1.998 4.201 2.698 2.7 -0.002 10.416 9.071 1.345
44 52:19.3 30:29.7 461862.7 -6.001 1.499 1.998 4.2 2.696 2.697 -0.001 10.407 9.063 1.344
45 32:29.7 10:33.9 471466.9 -6.001 1.5 1.998 4.2 2.693 2.695 -0.002 10.398 9.057 1.341
46 12:34.0 50:31.3 481064.3 -6.001 1.5 1.999 4.2 2.691 2.692 -0.001 10.39 9.049 1.341
47 52:31.3 30:18.5 490651.5 -6.001 1.5 1.998 4.2 2.688 2.69 -0.002 10.381 9.043 1.338
48 32:18.6 10:01.2 500234.2 -6.001 1.499 1.998 4.2 2.686 2.688 -0.002 10.374 9.036 1.338
49 12:01.3 49:36.9 509809.9 -6.001 1.5 1.999 4.2 2.684 2.686 -0.002 10.365 9.03 1.335
50 51:37.0 29:06.5 519379.5 -6.001 1.499 1.996 4.2 2.682 2.684 -0.002 10.358 9.024 1.334
51 31:06.5 08:29.5 528942.5 -6.001 1.5 1.997 4.2 2.68 2.682 -0.002 10.35 9.017 1.333
52 10:29.6 47:44.9 538497.9 -6.001 1.5 1.996 4.2 2.677 2.679 -0.002 10.342 9.011 1.331
53 49:44.9 26:53.8 548046.8 -6.001 1.5 1.999 4.2 2.676 2.677 -0.001 10.335 9.006 1.329
54 28:53.9 05:54.5 557587.5 -6.001 1.5 1.998 4.2 2.673 2.675 -0.002 10.328 9 1.328
55 07:54.6 44:50.7 567123.7 -6.001 1.499 1.998 4.2 2.672 2.674 -0.002 10.321 8.994 1.327
56 46:50.7 23:42.6 576655.6 -6.001 1.5 1.999 4.2 2.67 2.672 -0.002 10.314 8.989 1.325
57 25:42.6 02:28.6 586181.6 -6.001 1.5 1.997 4.2 2.668 2.67 -0.002 10.307 8.984 1.323
58 04:28.7 41:10.5 595703.5 -6.001 1.5 1.996 4.2 2.666 2.668 -0.002 10.301 8.979 1.322
59 43:10.6 19:46.5 605219.5 -6.001 1.499 1.999 4.2 2.664 2.666 -0.002 10.294 8.973 1.321
60 21:46.5 58:18.3 614731.3 -6.001 1.499 1.997 4.2 2.662 2.665 -0.003 10.288 8.969 1.319
61 00:18.3 36:44.0 624237 -6.001 1.499 1.998 4.2 2.661 2.663 -0.002 10.282 8.965 1.317
62 38:44.1 15:05.6 633738.6 -6.001 1.5 1.999 4.2 2.659 2.661 -0.002 10.276 8.961 1.315
63 17:05.7 53:22.8 643235.8 -6.001 1.5 1.999 4.2 2.658 2.66 -0.002 10.271 8.957 1.314
64 55:22.9 31:34.7 652727.7 -6.001 1.499 1.995 4.2 2.656 2.658 -0.002 10.264 8.951 1.313
65 33:34.7 09:42.9 662215.9 -6.001 1.499 1.999 4.2 2.654 2.657 -0.003 10.259 8.946 1.313
66 11:43.0 47:46.1 671699.1 -6.001 1.499 1.995 4.2 2.653 2.655 -0.002 10.252 8.943 1.309
67 49:46.1 25:45.9 681178.9 -6.001 1.5 1.999 4.2 2.651 2.653 -0.002 10.248 8.938 1.31
68 27:46.0 03:38.8 690651.8 -6.001 1.499 1.998 4.2 2.649 2.652 -0.003 10.241 8.933 1.308
69 05:38.9 41:26.5 700119.5 -6.001 1.499 1.997 4.2 2.648 2.65 -0.002 10.235 8.929 1.306
70 43:26.6 19:09.1 709582.1 -6.001 1.499 1.997 4.2 2.647 2.649 -0.002 10.231 8.925 1.306
71 21:09.2 56:46.1 719039.1 -6.001 1.5 1.998 4.2 2.645 2.647 -0.002 10.225 8.92 1.305
72 58:46.1 34:18.9 728491.9 -6.001 1.499 1.998 4.2 2.643 2.646 -0.003 10.22 8.917 1.303
73 36:19.0 11:49.2 737942.2 -6.001 1.5 1.997 4.2 2.642 2.645 -0.003 10.215 8.912 1.303
74 13:49.3 49:15.0 747388 -6.001 1.5 1.997 4.2 2.641 2.643 -0.002 10.21 8.909 1.301
75 51:15.0 26:36.2 756829.2 -6.001 1.499 1.999 4.2 2.639 2.642 -0.003 10.205 8.904 1.301
76 28:36.3 03:53.8 766266.8 -6.001 1.5 1.998 4.2 2.638 2.641 -0.003 10.2 8.9 1.3
77 05:53.9 40:52.7 775685.7 -6.001 1.499 1.997 4.2 2.636 2.638 -0.002 10.192 8.88 1.312
78 42:52.7 17:43.1 785096.1 -6.001 1.5 1.999 4.2 2.634 2.636 -0.002 10.186 8.872 1.314
79 19:43.2 54:28.0 794501 -6.001 1.499 1.997 4.2 2.632 2.635 -0.003 10.182 8.867 1.315
80 56:28.0 31:05.6 803898.6 -6.001 1.5 1.995 4.2 2.63 2.634 -0.004 10.172 8.862 1.31
81 33:05.7 07:39.5 813292.5 -6.001 1.499 1.996 4.2 2.629 2.632 -0.003 10.172 8.857 1.315
82 09:39.5 44:10.6 822683.6 -6.001 1.499 1.996 4.2 2.628 2.631 -0.003 10.167 8.854 1.313
83 46:10.7 20:38.0 832071 -6.001 1.499 1.997 4.2 2.627 2.629 -0.002 10.162 8.849 1.313
84 22:38.1 57:00.9 841453.9 -6.001 1.499 1.995 4.2 2.626 2.628 -0.002 10.158 8.846 1.312
85 59:00.9 33:20.3 850833.3 -6.001 1.499 1.999 4.2 2.624 2.627 -0.003 10.154 8.843 1.311
86 35:20.3 09:37.0 860210 -6.001 1.499 1.997 4.2 2.623 2.626 -0.003 10.149 8.839 1.31
87 11:37.1 45:47.7 869580.7 -6.001 1.5 1.998 4.2 2.622 2.625 -0.003 10.144 8.835 1.309
88 47:47.8 21:56.4 878949.4 -6.001 1.499 1.995 4.2 2.621 2.624 -0.003 10.14 8.832 1.308
89 23:56.4 58:02.6 888315.6 -6.001 1.499 1.999 4.2 2.62 2.622 -0.002 10.137 8.829 1.308
90 00:02.6 34:02.6 897675.6 -6.001 1.499 1.995 4.2 2.618 2.621 -0.003 10.132 8.826 1.306
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91 36:02.6 09:59.3 907032.3 -6.001 1.499 1.999 4.2 2.617 2.62 -0.003 10.128 8.822 1.306
92 11:59.3 45:53.2 916386.2 -6.001 1.499 1.997 4.2 2.616 2.619 -0.003 10.123 8.818 1.305
93 47:53.2 21:45.1 925738.1 -6.001 1.5 1.996 4.2 2.615 2.618 -0.003 10.119 8.815 1.304
94 23:45.2 57:34.5 935087.5 -6.001 1.499 1.996 4.2 2.614 2.617 -0.003 10.116 8.812 1.304
95 59:34.6 33:17.4 944430.4 -6.001 1.5 1.998 4.2 2.613 2.616 -0.003 10.111 8.809 1.302
96 35:17.4 08:58.3 953771.3 -6.001 1.499 1.999 4.2 2.612 2.615 -0.003 10.107 8.806 1.301
97 10:58.4 44:36.5 963109.5 -6.001 1.499 1.995 4.2 2.611 2.614 -0.003 10.103 8.803 1.3
98 46:36.5 20:10.4 972443.4 -6.001 1.5 1.996 4.2 2.61 2.613 -0.003 10.1 8.8 1.3
99 22:10.5 55:41.0 981774 -6.001 1.5 1.995 4.2 2.609 2.611 -0.002 10.096 8.796 1.3

100 57:41.0 31:09.0 991102 -6.001 1.5 1.996 4.2 2.608 2.61 -0.002 10.092 8.793 1.299
101 33:09.0 06:33.2 1000426 -6.001 1.499 1.997 4.2 2.606 2.609 -0.003 10.088 8.79 1.298
102 08:33.3 41:54.3 1009747 -6.001 1.499 1.999 4.2 2.605 2.608 -0.003 10.085 8.787 1.298
103 43:54.3 17:13.4 1019066 -6.001 1.499 1.999 4.2 2.604 2.607 -0.003 10.081 8.784 1.297
104 19:13.5 52:29.5 1028383 -6.001 1.499 1.995 4.2 2.603 2.606 -0.003 10.077 8.781 1.296
105 54:29.6 27:43.5 1037696 -6.001 1.5 1.999 4.2 2.603 2.605 -0.002 10.074 8.777 1.297
106 29:43.6 02:51.9 1047005 -6.001 1.499 1.999 4.2 2.601 2.604 -0.003 10.069 8.774 1.295
107 04:51.9 37:56.4 1056309 -6.001 1.499 1.998 4.2 2.6 2.603 -0.003 10.066 8.771 1.295
108 39:56.4 12:57.0 1065610 -6.001 1.499 1.995 4.2 2.599 2.602 -0.003 10.062 8.767 1.295
109 14:57.1 47:54.9 1074908 -6.001 1.499 1.996 4.2 2.598 2.601 -0.003 10.059 8.764 1.295
110 49:54.9 22:49.3 1084202 -6.001 1.499 1.997 4.2 2.597 2.6 -0.003 10.055 8.761 1.294
111 24:49.3 57:41.6 1093495 -6.001 1.499 1.997 4.2 2.596 2.599 -0.003 10.052 8.758 1.294
112 59:41.7 32:31.1 1102784 -6.001 1.5 1.996 4.2 2.595 2.598 -0.003 10.048 8.755 1.293
113 34:31.2 07:16.1 1112069 -6.001 1.499 1.995 4.2 2.594 2.597 -0.003 10.045 8.751 1.294
114 09:16.2 41:56.4 1121349 -6.001 1.499 1.998 4.2 2.593 2.596 -0.003 10.041 8.746 1.295
115 43:56.4 16:33.1 1130626 -6.001 1.499 1.996 4.2 2.592 2.595 -0.003 10.037 8.743 1.294
116 18:33.2 51:05.6 1139899 -6.001 1.5 1.995 4.2 2.591 2.594 -0.003 10.034 8.739 1.295
117 53:05.7 25:36.5 1149169 -6.001 1.499 1.998 4.2 2.59 2.593 -0.003 10.031 8.736 1.295
118 27:36.6 00:04.6 1158438 -6.001 1.499 1.997 4.2 2.589 2.592 -0.003 10.027 8.733 1.294
119 02:04.6 34:29.7 1167703 -6.001 1.499 1.998 4.2 2.588 2.591 -0.003 10.024 8.73 1.294
120 36:29.7 08:51.0 1176964 -6.001 1.499 1.998 4.2 2.588 2.591 -0.003 10.021 8.727 1.294
121 10:51.0 43:09.1 1186222 -6.001 1.499 1.997 4.2 2.587 2.59 -0.003 10.017 8.724 1.293
122 45:09.1 17:25.1 1195478 -6.001 1.499 1.996 4.2 2.586 2.589 -0.003 10.014 8.722 1.292
123 19:25.1 51:39.8 1204733 -6.001 1.499 1.994 4.2 2.585 2.588 -0.003 10.012 8.72 1.292
124 53:39.9 25:53.2 1213986 -6.001 1.499 1.996 4.2 2.584 2.587 -0.003 10.009 8.717 1.292
125 27:53.2 00:03.3 1223236 -6.001 1.499 1.996 4.2 2.583 2.587 -0.004 10.006 8.714 1.292
126 02:03.3 34:08.0 1232481 -6.001 1.499 1.999 4.2 2.582 2.585 -0.003 10.002 8.711 1.291
127 36:08.0 08:11.7 1241725 -6.001 1.5 1.997 4.2 2.582 2.585 -0.003 9.999 8.709 1.29
128 10:11.7 42:11.4 1250964 -6.001 1.499 1.999 4.2 2.581 2.584 -0.003 9.996 8.706 1.29
129 42:11.4 44:42.0 1265515 -1.5 1.5 1.999 4.2 2.58 2.61 -0.03 9.993 9.466 0.527
130 44:42.0 48:08.5 1280121 -1.5 1.499 1.999 4.2 2.605 2.609 -0.004 10.094 9.466 0.628
131 48:08.5 51:27.3 1294720 -1.5 1.5 1.999 4.2 2.604 2.607 -0.003 10.089 9.462 0.627
132 51:27.3 52:27.4 1294780 0 0 2.775 2.787 2.604 2.607 -0.003 10.089 9.462 0.627
134 16:45.0 18:28.3 1309294 -1.5 1.499 1.999 4.2 2.581 2.604 -0.023 10.051 9.421 0.63
135 18:28.4 20:17.2 1323803 -1.5 1.5 1.998 4.2 2.603 2.602 0.001 10.099 9.415 0.684
136 20:17.3 21:48.7 1338294 -1.5 1.5 1.999 4.2 2.598 2.599 -0.001 10.081 9.407 0.674
137 21:48.7 36:57.9 1357203 -6.001 1.499 1.997 4.2 2.598 2.599 -0.001 10.081 9.407 0.674
138 38:58.0 08:44.4 1366310 -6.001 1.499 1.996 4.2 2.567 2.568 -0.001 9.961 8.537 1.424
139 10:44.5 40:22.1 1375407 -6.001 1.499 1.996 4.2 2.564 2.566 -0.002 9.951 8.529 1.422
140 42:22.1 11:55.1 1384500 -6.001 1.499 1.997 4.2 2.562 2.564 -0.002 9.944 8.526 1.418
141 13:55.2 43:25.4 1393591 -6.001 1.499 1.999 4.2 2.561 2.563 -0.002 9.938 8.525 1.413
142 45:25.4 14:54.0 1402679 -6.001 1.499 1.996 4.2 2.56 2.562 -0.002 9.934 8.526 1.408
143 16:54.1 46:21.5 1411767 -6.001 1.499 1.998 4.2 2.559 2.561 -0.002 9.93 8.525 1.405
144 48:21.6 17:47.0 1420852 -6.001 1.499 1.995 4.2 2.558 2.56 -0.002 9.926 8.525 1.401
145 19:47.1 49:12.4 1429938 -6.001 1.499 1.998 4.2 2.557 2.56 -0.003 9.923 8.525 1.398
146 51:12.4 20:37.8 1439023 -6.001 1.499 1.999 4.2 2.556 2.559 -0.003 9.921 8.525 1.396
147 22:37.9 51:59.9 1448105 -6.001 1.499 1.997 4.2 2.555 2.558 -0.003 9.917 8.524 1.393
148 54:00.0 23:21.2 1457187 -6.001 1.499 1.995 4.2 2.554 2.557 -0.003 9.913 8.523 1.39
149 25:21.2 54:41.0 1466266 -6.001 1.499 1.999 4.2 2.554 2.556 -0.002 9.911 8.522 1.389
150 56:41.0 25:59.1 1475344 -6.001 1.5 1.994 4.2 2.553 2.556 -0.003 9.908 8.521 1.387
151 27:59.1 57:17.1 1484422 -6.001 1.5 1.995 4.2 2.552 2.555 -0.003 9.906 8.52 1.386
152 59:17.1 28:32.2 1493498 -6.001 1.499 1.996 4.2 2.552 2.554 -0.002 9.902 8.519 1.383
153 30:32.2 59:45.4 1502571 -6.001 1.499 1.999 4.2 2.551 2.554 -0.003 9.899 8.519 1.38
154 01:45.5 30:59.7 1511645 -6.001 1.499 1.997 4.2 2.55 2.553 -0.003 9.897 8.519 1.378
155 32:59.7 02:13.3 1520719 -6.001 1.499 1.995 4.2 2.55 2.553 -0.003 9.895 8.52 1.375
156 04:13.3 33:27.3 1529793 -6.001 1.499 1.995 4.2 2.549 2.552 -0.003 9.893 8.521 1.372
157 35:27.3 04:35.6 1538861 -6.001 1.499 1.997 4.2 2.548 2.551 -0.003 9.888 8.485 1.403
158 06:35.6 35:10.1 1547896 -6.001 1.5 1.997 4.2 2.543 2.546 -0.003 9.874 8.464 1.41
159 37:10.2 05:42.6 1556928 -6.001 1.499 1.996 4.2 2.542 2.545 -0.003 9.871 8.463 1.408
160 07:42.7 36:06.8 1565952 -6.001 1.5 1.997 4.2 2.541 2.543 -0.002 9.865 8.454 1.411
161 38:06.8 06:33.9 1574979 -6.001 1.499 1.996 4.2 2.541 2.544 -0.003 9.866 8.459 1.407
162 08:33.9 37:01.2 1584007 -6.001 1.5 1.998 4.2 2.54 2.543 -0.003 9.864 8.461 1.403
163 39:01.2 07:27.7 1593033 -6.001 1.499 1.999 4.2 2.54 2.543 -0.003 9.861 8.461 1.4
164 09:27.7 37:55.2 1602061 -6.001 1.5 1.999 4.201 2.539 2.542 -0.003 9.86 8.462 1.398
165 39:55.3 08:22.0 1611087 -6.001 1.499 1.996 4.2 2.539 2.542 -0.003 9.858 8.463 1.395
166 10:22.1 38:43.2 1620109 -6.001 1.499 1.996 4.2 2.537 2.541 -0.004 9.853 8.455 1.398
167 40:43.2 09:06.7 1629132 -6.001 1.499 1.996 4.2 2.538 2.541 -0.003 9.853 8.459 1.394
168 11:06.8 39:29.8 1638155 -6.001 1.499 1.997 4.2 2.537 2.54 -0.003 9.851 8.46 1.391
169 41:29.9 09:54.0 1647179 -6.001 1.499 1.994 4.2 2.537 2.54 -0.003 9.85 8.46 1.39
170 11:54.1 40:18.2 1656204 -6.001 1.499 1.994 4.2 2.536 2.539 -0.003 9.848 8.46 1.388
171 42:18.2 10:41.5 1665227 -6.001 1.499 1.995 4.2 2.536 2.539 -0.003 9.846 8.461 1.385
172 12:41.6 41:03.6 1674249 -6.001 1.499 1.997 4.2 2.535 2.539 -0.004 9.844 8.46 1.384
173 43:03.7 11:23.8 1683269 -6.001 1.5 1.997 4.2 2.535 2.538 -0.003 9.841 8.459 1.382
174 13:23.8 41:43.1 1692289 -6.001 1.499 1.999 4.2 2.534 2.538 -0.004 9.84 8.458 1.382
175 43:43.2 12:00.6 1701306 -6.001 1.5 1.999 4.2 2.534 2.537 -0.003 9.837 8.457 1.38
176 14:00.7 42:17.4 1710323 -6.001 1.499 1.998 4.2 2.533 2.536 -0.003 9.835 8.456 1.379
177 44:17.5 12:33.8 1719339 -6.001 1.499 1.995 4.2 2.533 2.536 -0.003 9.833 8.456 1.377
178 14:33.9 42:12.3 1728318 -6.001 1.5 1.995 4.2 2.517 2.533 -0.016 9.77 8.405 1.365
179 44:12.4 11:28.5 1737274 -6.001 1.5 1.997 4.2 2.522 2.525 -0.003 9.803 8.365 1.438
180 13:28.5 40:42.1 1746228 -6.001 1.5 1.996 4.2 2.522 2.525 -0.003 9.8 8.367 1.433
181 42:42.2 09:58.2 1755184 -6.001 1.5 1.998 4.2 2.522 2.525 -0.003 9.8 8.372 1.428
182 11:58.2 39:16.2 1764142 -6.001 1.5 1.996 4.2 2.522 2.525 -0.003 9.799 8.376 1.423
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183 41:16.3 08:35.9 1773101 -6.001 1.5 1.998 4.2 2.522 2.525 -0.003 9.798 8.38 1.418
184 10:36.0 37:57.6 1782063 -6.001 1.5 1.994 4.2 2.522 2.525 -0.003 9.798 8.384 1.414
185 39:57.6 07:21.0 1791026 -6.001 1.499 1.996 4.2 2.522 2.525 -0.003 9.797 8.387 1.41
186 09:21.0 36:47.1 1799992 -6.001 1.5 1.997 4.2 2.522 2.525 -0.003 9.797 8.391 1.406
187 38:47.1 06:13.5 1808959 -6.001 1.499 1.998 4.2 2.521 2.524 -0.003 9.796 8.392 1.404
188 08:13.6 35:39.8 1817925 -6.001 1.499 1.995 4.2 2.521 2.525 -0.004 9.795 8.395 1.4
189 37:39.9 05:08.0 1826893 -6.001 1.499 1.998 4.2 2.521 2.524 -0.003 9.794 8.397 1.397
190 07:08.0 34:36.8 1835862 -6.001 1.499 1.999 4.2 2.521 2.524 -0.003 9.793 8.398 1.395
191 36:36.9 04:04.7 1844830 -6.001 1.499 1.995 4.2 2.521 2.524 -0.003 9.791 8.398 1.393
192 06:04.7 33:32.8 1853798 -6.001 1.499 1.998 4.2 2.52 2.523 -0.003 9.79 8.398 1.392
193 35:32.9 02:59.8 1862765 -6.001 1.499 1.995 4.2 2.52 2.523 -0.003 9.788 8.398 1.39
194 04:59.9 32:26.0 1871731 -6.001 1.499 1.998 4.2 2.519 2.523 -0.004 9.786 8.398 1.388
195 34:26.1 01:51.0 1880696 -6.001 1.499 1.997 4.2 2.519 2.522 -0.003 9.784 8.397 1.387
196 03:51.1 31:16.8 1889662 -6.001 1.499 1.996 4.2 2.518 2.522 -0.004 9.783 8.396 1.387
197 33:16.9 00:42.4 1898628 -6.001 1.499 1.995 4.2 2.518 2.521 -0.003 9.781 8.397 1.384
198 02:42.4 30:03.6 1907589 -6.001 1.499 1.994 4.2 2.517 2.521 -0.004 9.778 8.395 1.383
199 32:03.7 59:26.7 1916552 -6.001 1.499 1.997 4.2 2.517 2.52 -0.003 9.778 8.395 1.383
200 01:26.7 28:48.2 1925514 -6.001 1.5 1.998 4.2 2.517 2.52 -0.003 9.776 8.394 1.382
201 30:48.3 58:06.5 1934472 -6.001 1.5 1.999 4.2 2.516 2.519 -0.003 9.773 8.391 1.382
202 00:06.6 27:23.8 1943429 -6.001 1.499 1.996 4.2 2.515 2.518 -0.003 9.77 8.388 1.382
203 29:23.8 56:38.3 1952384 -6.001 1.499 1.994 4.2 2.514 2.518 -0.004 9.767 8.385 1.382
204 58:38.3 25:51.2 1961337 -6.001 1.5 1.996 4.2 2.514 2.517 -0.003 9.765 8.384 1.381
205 27:51.2 55:02.1 1970287 -6.001 1.499 1.999 4.2 2.513 2.516 -0.003 9.762 8.381 1.381
206 57:02.1 24:10.3 1979236 -6.001 1.499 1.996 4.2 2.512 2.516 -0.004 9.759 8.379 1.38
207 26:10.4 53:17.0 1988182 -6.001 1.499 1.995 4.2 2.512 2.515 -0.003 9.758 8.378 1.38
208 55:17.1 22:23.2 1997129 -6.001 1.5 1.998 4.2 2.511 2.515 -0.004 9.756 8.376 1.38
209 24:23.3 51:27.8 2006073 -6.001 1.499 1.999 4.2 2.511 2.514 -0.003 9.754 8.375 1.379
210 53:27.8 20:31.1 2015017 -6.001 1.499 1.995 4.2 2.51 2.514 -0.004 9.752 8.374 1.378
211 22:31.2 49:34.2 2023960 -6.001 1.499 1.996 4.2 2.51 2.513 -0.003 9.751 8.373 1.378
212 51:34.3 18:34.8 2032900 -6.001 1.499 1.996 4.2 2.509 2.513 -0.004 9.749 8.371 1.378
213 20:34.9 47:34.5 2041840 -6.001 1.499 1.996 4.2 2.509 2.512 -0.003 9.747 8.37 1.377
214 49:34.5 16:35.6 2050781 -6.001 1.499 1.999 4.2 2.509 2.512 -0.003 9.746 8.37 1.376
215 18:35.6 45:33.0 2059718 -6.001 1.499 1.997 4.2 2.508 2.511 -0.003 9.744 8.368 1.376
216 47:33.0 14:27.7 2068653 -6.001 1.499 1.999 4.2 2.507 2.511 -0.004 9.741 8.366 1.375
217 16:27.8 43:21.4 2077587 -6.001 1.499 1.994 4.2 2.507 2.51 -0.003 9.739 8.365 1.374
218 45:21.4 12:14.0 2086519 -6.001 1.499 1.996 4.2 2.506 2.51 -0.004 9.738 8.364 1.374
219 14:14.0 41:04.1 2095450 -6.001 1.499 1.997 4.2 2.506 2.509 -0.003 9.735 8.361 1.374
220 43:04.2 09:55.0 2104380 -6.001 1.499 1.998 4.2 2.505 2.509 -0.004 9.733 8.361 1.372
221 11:55.1 38:44.6 2113310 -6.001 1.499 1.994 4.2 2.505 2.508 -0.003 9.732 8.359 1.373
222 40:44.6 07:33.2 2122239 -6.001 1.499 1.997 4.2 2.504 2.508 -0.004 9.73 8.358 1.372
223 09:33.2 53:03.1 2132168 -6.001 1.499 1.999 4.229 2.557 2.548 0.009 9.953 8.494 1.459
224 55:03.1 21:27.3 2141073 -6.001 1.499 1.996 4.2 2.495 2.502 -0.007 9.697 8.334 1.363
225 23:27.4 06:30.2 2150976 -6.001 1.499 1.995 4.218 2.549 2.536 0.013 9.922 8.378 1.544
226 08:30.3 33:11.7 2159777 -6.001 1.499 1.994 4.2 2.473 2.479 -0.006 9.625 8.162 1.463
227 35:11.7 59:45.7 2168571 -6.001 1.5 1.999 4.2 2.473 2.477 -0.004 9.626 8.149 1.477
228 01:45.8 26:13.7 2177359 -6.001 1.499 1.994 4.2 2.472 2.477 -0.005 9.624 8.144 1.48
229 28:13.7 52:35.3 2186141 -6.001 1.5 1.999 4.2 2.471 2.475 -0.004 9.621 8.122 1.499
230 54:35.4 18:42.8 2194908 -6.001 1.499 1.996 4.2 2.468 2.472 -0.004 9.611 8.099 1.512
231 20:42.8 44:44.3 2203670 -6.001 1.499 1.998 4.2 2.466 2.47 -0.004 9.607 8.085 1.522
232 46:44.4 10:39.6 2212425 -6.001 1.499 1.999 4.2 2.465 2.469 -0.004 9.603 8.071 1.532
233 12:39.7 36:28.8 2221174 -6.001 1.5 1.995 4.2 2.463 2.467 -0.004 9.598 8.061 1.537
234 38:28.9 02:14.6 2229920 -6.001 1.499 1.997 4.2 2.462 2.466 -0.004 9.595 8.055 1.54
235 04:14.7 27:58.4 2238664 -6.001 1.499 1.995 4.2 2.462 2.466 -0.004 9.593 8.053 1.54
236 29:58.5 53:40.6 2247406 -6.001 1.499 1.999 4.2 2.461 2.465 -0.004 9.591 8.04 1.551
237 55:40.6 19:14.4 2256140 -6.001 1.499 1.996 4.2 2.459 2.463 -0.004 9.584 8.026 1.558
238 21:14.4 44:44.4 2264870 -6.001 1.499 1.996 4.2 2.458 2.462 -0.004 9.582 8.021 1.561
239 46:44.5 10:13.5 2273599 -6.001 1.499 1.996 4.2 2.458 2.462 -0.004 9.581 8.021 1.56
240 12:13.5 35:41.8 2282327 -6.001 1.5 1.999 4.2 2.458 2.462 -0.004 9.58 8.024 1.556
241 37:41.9 01:13.1 2291059 -6.001 1.499 1.997 4.2 2.458 2.462 -0.004 9.581 8.025 1.556
242 03:13.2 26:41.5 2299787 -6.001 1.499 1.995 4.2 2.458 2.461 -0.003 9.579 8.017 1.562
243 28:41.5 52:02.7 2308508 -6.001 1.499 1.998 4.2 2.456 2.46 -0.004 9.573 8.004 1.569
244 54:02.7 17:20.9 2317226 -6.001 1.499 1.997 4.2 2.455 2.459 -0.004 9.57 8 1.57
245 19:21.0 42:37.2 2325943 -6.001 1.499 1.999 4.2 2.455 2.458 -0.003 9.568 7.994 1.574
246 44:37.2 07:48.7 2334654 -6.001 1.499 1.995 4.2 2.453 2.457 -0.004 9.564 7.987 1.577
247 09:48.8 32:59.6 2343365 -6.001 1.499 1.997 4.2 2.453 2.456 -0.003 9.563 7.984 1.579
248 34:59.6 58:06.2 2352072 -6.001 1.499 1.998 4.2 2.452 2.455 -0.003 9.559 7.976 1.583
249 00:06.3 23:12.4 2360778 -6.001 1.499 1.999 4.2 2.451 2.455 -0.004 9.558 7.98 1.578
250 25:12.4 48:21.6 2369487 -6.001 1.499 1.995 4.2 2.452 2.456 -0.004 9.56 7.987 1.573
251 50:21.7 13:27.4 2378193 -6.001 1.499 1.995 4.2 2.451 2.455 -0.004 9.556 7.975 1.581
252 15:27.4 38:24.9 2386890 -6.001 1.499 1.997 4.2 2.449 2.453 -0.004 9.549 7.963 1.586
253 40:25.0 03:23.4 2395589 -6.001 1.499 1.996 4.2 2.449 2.453 -0.004 9.549 7.954 1.595
254 05:23.4 28:12.8 2404278 -6.001 1.499 1.996 4.2 2.447 2.45 -0.003 9.541 7.944 1.597
255 30:12.9 53:06.9 2412972 -6.001 1.5 1.998 4.2 2.448 2.451 -0.003 9.544 7.951 1.593
256 55:06.9 17:59.0 2421664 -6.001 1.499 1.999 4.2 2.447 2.451 -0.004 9.542 7.951 1.591
257 19:59.0 42:53.6 2430359 -6.001 1.5 1.997 4.2 2.447 2.451 -0.004 9.543 7.963 1.58
258 44:53.6 07:56.7 2439062 -6.001 1.499 1.997 4.2 2.45 2.453 -0.003 9.549 7.98 1.569
259 09:56.8 32:57.8 2447763 -6.001 1.499 1.996 4.2 2.449 2.453 -0.004 9.547 7.979 1.568
260 34:57.9 58:01.0 2456466 -6.001 1.499 1.996 4.2 2.449 2.453 -0.004 9.548 7.984 1.564
261 00:01.1 23:04.3 2465170 -6.001 1.499 1.999 4.2 2.449 2.453 -0.004 9.547 7.984 1.563
262 23:04.3 12:41.1 2478947 -1.5 1.5 1.999 4.2 2.449 2.478 -0.029 9.547 8.928 0.619
263 12:41.1 03:12.2 2492778 -1.5 1.499 1.999 4.2 2.472 2.478 -0.006 9.64 8.931 0.709
264 03:12.2 53:45.3 2506611 -1.5 1.5 1.998 4.2 2.473 2.478 -0.005 9.642 8.952 0.69
265 53:45.3 54:45.4 2506671 -1.5 1.5 1.998 4.2 2.473 2.478 -0.005 9.642 8.952 0.69
266 12:45.0 57:05.7 2520141 -1.5 1.5 1.999 4.2 2.378 2.411 -0.033 9.346 8.574 0.772
267 57:05.8 42:09.1 2533645 -1.5 1.5 1.999 4.2 2.413 2.413 0 9.455 8.584 0.871
268 42:09.2 27:03.2 2547139 -1.5 1.5 1.999 4.2 2.41 2.412 -0.002 9.442 8.582 0.86
269 27:03.2 22:33.3 2564869 -6.001 1.499 1.996 4.2 2.41 2.412 -0.002 9.442 8.582 0.86
270 24:33.3 45:55.0 2573471 -6.001 1.499 1.996 4.2 2.423 2.424 -0.001 9.469 7.739 1.73
271 47:55.1 09:02.7 2582058 -6.001 1.499 1.997 4.2 2.419 2.421 -0.002 9.453 7.73 1.723
272 11:02.7 32:05.7 2590641 -6.001 1.499 1.999 4.2 2.417 2.419 -0.002 9.448 7.724 1.724
273 34:05.7 55:15.0 2599231 -6.001 1.499 1.999 4.2 2.419 2.421 -0.002 9.453 7.737 1.716
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274 57:15.0 18:27.5 2607823 -6.001 1.5 1.997 4.2 2.42 2.422 -0.002 9.454 7.736 1.718
275 20:27.6 41:42.2 2616418 -6.001 1.499 1.995 4.2 2.42 2.423 -0.003 9.455 7.762 1.693
276 43:42.2 05:06.6 2625022 -6.001 1.5 1.999 4.2 2.423 2.426 -0.003 9.464 7.782 1.682
277 07:06.7 28:42.1 2633638 -6.001 1.499 1.995 4.2 2.426 2.429 -0.003 9.473 7.807 1.666
278 30:42.1 52:30.6 2642266 -6.001 1.5 1.998 4.2 2.43 2.433 -0.003 9.485 7.832 1.653
279 54:30.7 16:23.1 2650899 -6.001 1.499 1.998 4.2 2.43 2.434 -0.004 9.487 7.844 1.643
280 18:23.2 40:14.1 2659530 -6.001 1.499 1.996 4.2 2.43 2.433 -0.003 9.485 7.843 1.642
281 42:14.1 04:08.2 2668164 -6.001 1.499 1.999 4.2 2.431 2.434 -0.003 9.488 7.851 1.637
282 06:08.2 28:03.8 2676800 -6.001 1.499 1.995 4.2 2.431 2.434 -0.003 9.488 7.855 1.633
283 30:03.8 52:01.4 2685437 -6.001 1.499 1.998 4.2 2.431 2.435 -0.004 9.487 7.864 1.623
284 54:01.5 16:02.2 2694078 -6.001 1.499 1.999 4.2 2.432 2.435 -0.003 9.491 7.866 1.625
285 18:02.3 40:04.8 2702721 -6.001 1.499 1.996 4.2 2.432 2.436 -0.004 9.491 7.871 1.62
286 42:04.8 04:06.7 2711362 -6.001 1.499 1.996 4.2 2.432 2.436 -0.004 9.49 7.875 1.615
287 06:06.7 28:10.4 2720006 -6.001 1.499 1.995 4.2 2.432 2.436 -0.004 9.491 7.88 1.611
288 30:10.4 52:15.8 2728652 -6.001 1.499 1.999 4.2 2.433 2.436 -0.003 9.492 7.888 1.604
289 54:15.8 16:22.9 2737299 -6.001 1.499 1.999 4.2 2.433 2.436 -0.003 9.492 7.892 1.6
290 18:23.0 40:32.7 2745948 -6.001 1.499 1.998 4.2 2.434 2.437 -0.003 9.494 7.897 1.597
291 42:32.7 04:44.5 2754600 -6.001 1.499 1.997 4.2 2.434 2.438 -0.004 9.495 7.903 1.592
292 06:44.6 28:59.4 2763255 -6.001 1.499 1.996 4.2 2.435 2.438 -0.003 9.497 7.909 1.588
293 30:59.4 53:15.6 2771911 -6.001 1.499 1.996 4.2 2.435 2.438 -0.003 9.497 7.914 1.583
294 55:15.7 17:32.3 2780568 -6.001 1.499 1.995 4.2 2.435 2.438 -0.003 9.497 7.92 1.577
295 19:32.4 41:50.2 2789226 -6.001 1.499 1.995 4.2 2.435 2.439 -0.004 9.497 7.924 1.573
296 43:50.2 06:10.0 2797886 -6.001 1.499 1.999 4.2 2.435 2.439 -0.004 9.498 7.926 1.572
297 08:10.1 30:27.4 2806543 -6.001 1.499 1.995 4.2 2.435 2.438 -0.003 9.495 7.926 1.569
298 32:27.5 54:43.6 2815199 -6.001 1.499 1.997 4.2 2.434 2.438 -0.004 9.494 7.923 1.571
299 56:43.7 19:00.7 2823857 -6.001 1.499 1.995 4.2 2.434 2.438 -0.004 9.494 7.921 1.573
300 21:00.8 43:16.8 2832513 -6.001 1.499 1.995 4.2 2.434 2.437 -0.003 9.492 7.921 1.571
301 45:16.9 07:33.1 2841169 -6.001 1.499 1.999 4.2 2.434 2.437 -0.003 9.492 7.922 1.57
302 09:33.1 31:49.4 2849825 -6.001 1.499 1.997 4.2 2.434 2.437 -0.003 9.491 7.922 1.569
303 33:49.4 56:05.1 2858481 -6.001 1.5 1.997 4.2 2.433 2.437 -0.004 9.49 7.92 1.57
304 58:05.1 20:18.7 2867134 -6.001 1.5 1.995 4.2 2.433 2.436 -0.003 9.487 7.918 1.569
305 22:18.7 44:32.5 2875788 -6.001 1.499 1.999 4.2 2.433 2.436 -0.003 9.486 7.918 1.568
306 46:32.5 08:44.9 2884441 -6.001 1.5 1.996 4.2 2.432 2.436 -0.004 9.485 7.917 1.568
307 10:44.9 32:57.0 2893093 -6.001 1.5 1.995 4.2 2.432 2.435 -0.003 9.484 7.919 1.565
308 34:57.0 57:09.5 2901745 -6.001 1.499 1.995 4.2 2.432 2.435 -0.003 9.484 7.921 1.563
309 59:09.5 21:21.6 2910397 -6.001 1.499 1.997 4.2 2.432 2.435 -0.003 9.483 7.918 1.565
310 23:21.7 45:29.5 2919045 -6.001 1.499 1.995 4.2 2.431 2.434 -0.003 9.478 7.911 1.567
311 47:29.5 09:34.6 2927690 -6.001 1.5 1.994 4.2 2.43 2.433 -0.003 9.476 7.904 1.572
312 11:34.6 33:36.3 2936332 -6.001 1.499 1.996 4.2 2.429 2.432 -0.003 9.472 7.9 1.572
313 35:36.4 57:38.9 2944975 -6.001 1.499 1.999 4.2 2.429 2.432 -0.003 9.471 7.902 1.569
314 59:39.0 21:38.1 2953614 -6.001 1.499 1.995 4.2 2.428 2.432 -0.004 9.468 7.9 1.568
315 23:38.2 45:35.5 2962251 -6.001 1.499 1.997 4.2 2.427 2.43 -0.003 9.466 7.894 1.572
316 47:35.5 09:31.1 2970887 -6.001 1.499 1.995 4.2 2.426 2.43 -0.004 9.464 7.892 1.572
317 11:31.2 33:22.0 2979518 -6.001 1.499 1.997 4.2 2.425 2.429 -0.004 9.46 7.886 1.574
318 35:22.1 57:11.6 2988147 -6.001 1.499 1.998 4.2 2.425 2.428 -0.003 9.458 7.886 1.572
319 59:11.6 21:02.3 2996778 -6.001 1.499 1.996 4.2 2.425 2.429 -0.004 9.458 7.892 1.566
320 23:02.4 44:50.2 3005406 -6.001 1.499 1.997 4.2 2.424 2.427 -0.003 9.455 7.881 1.574
321 46:50.2 08:30.0 3014026 -6.001 1.499 1.998 4.2 2.422 2.425 -0.003 9.448 7.865 1.583
322 10:30.0 32:00.1 3022636 -6.001 1.499 1.995 4.2 2.419 2.423 -0.004 9.439 7.85 1.589
323 34:00.1 55:22.7 3031238 -6.001 1.499 1.996 4.2 2.417 2.42 -0.003 9.432 7.838 1.594
324 57:22.7 18:35.5 3039831 -6.001 1.499 1.995 4.2 2.414 2.418 -0.004 9.423 7.825 1.598
325 20:35.5 41:41.9 3048418 -6.001 1.499 1.996 4.2 2.412 2.416 -0.004 9.417 7.815 1.602
326 43:41.9 04:36.9 3056993 -6.001 1.499 1.998 4.2 2.409 2.413 -0.004 9.407 7.808 1.599
327 06:36.9 27:34.3 3065570 -6.001 1.499 1.999 4.2 2.41 2.413 -0.003 9.408 7.802 1.606
328 29:34.3 50:19.4 3074135 -6.001 1.499 1.996 4.2 2.406 2.41 -0.004 9.396 7.78 1.616
329 52:19.4 12:59.1 3082695 -6.001 1.499 1.997 4.2 2.405 2.408 -0.003 9.391 7.772 1.619
330 14:59.1 35:31.6 3091247 -6.001 1.499 1.996 4.2 2.402 2.406 -0.004 9.383 7.764 1.619
331 37:31.6 58:00.9 3099797 -6.001 1.499 1.998 4.2 2.401 2.405 -0.004 9.38 7.758 1.622
332 00:00.9 20:25.8 3108342 -6.001 1.499 1.996 4.2 2.4 2.403 -0.003 9.375 7.742 1.633
333 22:25.8 42:38.8 3116875 -6.001 1.499 1.998 4.2 2.397 2.4 -0.003 9.363 7.725 1.638
334 44:38.8 04:46.1 3125402 -6.001 1.499 1.998 4.2 2.395 2.398 -0.003 9.357 7.708 1.649
335 06:46.1 26:50.7 3133927 -6.001 1.499 1.999 4.2 2.394 2.397 -0.003 9.355 7.699 1.656
336 28:50.7 49:00.1 3142456 -6.001 1.499 1.997 4.2 2.395 2.399 -0.004 9.359 7.701 1.658
337 51:00.1 11:16.2 3150992 -6.001 1.499 1.995 4.2 2.397 2.401 -0.004 9.365 7.703 1.662
338 13:16.2 33:28.8 3159525 -6.001 1.499 1.998 4.2 2.396 2.399 -0.003 9.359 7.693 1.666
339 35:28.8 55:38.9 3168055 -6.001 1.499 1.996 4.2 2.395 2.399 -0.004 9.357 7.688 1.669
340 57:39.0 17:42.8 3176579 -6.001 1.499 1.998 4.2 2.393 2.396 -0.003 9.351 7.675 1.676
341 19:42.8 39:35.6 3185091 -6.001 1.499 1.996 4.2 2.389 2.393 -0.004 9.338 7.685 1.653
342 41:35.6 01:36.1 3193612 -6.001 1.499 1.996 4.2 2.392 2.396 -0.004 9.348 7.695 1.653
343 03:36.1 23:42.6 3202138 -6.001 1.499 1.999 4.2 2.394 2.397 -0.003 9.353 7.69 1.663
344 25:42.6 45:32.8 3210649 -6.001 1.499 1.995 4.2 2.389 2.392 -0.003 9.334 7.662 1.672
345 47:32.8 07:14.6 3219150 -6.001 1.499 1.999 4.2 2.386 2.389 -0.003 9.325 7.627 1.698
346 09:14.7 29:04.5 3227660 -6.001 1.499 1.997 4.2 2.388 2.392 -0.004 9.334 7.644 1.69
347 31:04.5 50:53.4 3236169 -6.001 1.499 1.999 4.2 2.388 2.392 -0.004 9.332 7.627 1.705
348 52:53.4 13:46.1 3244742 -6.001 1.499 1.999 4.2 2.406 2.41 -0.004 9.391 7.712 1.679
349 15:46.1 36:55.4 3253331 -6.001 1.499 1.999 4.2 2.41 2.414 -0.004 9.404 7.753 1.651
350 38:55.5 59:34.1 3261890 -6.001 1.499 1.999 4.2 2.402 2.406 -0.004 9.378 7.689 1.689
351 01:34.1 22:23.7 3270459 -6.001 1.499 1.999 4.2 2.405 2.409 -0.004 9.387 7.706 1.681
352 24:23.7 45:11.6 3279027 -6.001 1.499 1.998 4.2 2.404 2.408 -0.004 9.385 7.719 1.666
353 47:11.6 07:41.2 3287577 -6.001 1.499 1.998 4.2 2.399 2.403 -0.004 9.369 7.67 1.699
354 09:41.2 30:05.9 3296122 -6.001 1.499 1.999 4.2 2.398 2.401 -0.003 9.363 7.674 1.689
355 32:05.9 52:36.3 3304672 -6.001 1.5 1.999 4.2 2.399 2.403 -0.004 9.368 7.657 1.711
356 54:36.3 15:27.5 3313243 -6.001 1.499 1.998 4.2 2.405 2.408 -0.003 9.384 7.71 1.674
357 17:27.5 38:24.0 3321820 -6.001 1.499 1.998 4.2 2.406 2.409 -0.003 9.388 7.692 1.696
358 40:24.0 01:33.3 3330409 -6.001 1.499 1.997 4.2 2.409 2.414 -0.005 9.399 7.756 1.643
359 03:33.3 24:58.4 3339014 -6.001 1.499 1.997 4.2 2.413 2.417 -0.004 9.412 7.779 1.633
360 26:58.4 48:34.6 3347630 -6.001 1.499 1.997 4.2 2.416 2.42 -0.004 9.419 7.846 1.573
361 50:34.7 12:13.9 3356250 -6.001 1.499 1.998 4.2 2.417 2.419 -0.002 9.422 7.805 1.617
362 14:13.9 35:52.3 3364868 -6.001 1.499 1.997 4.2 2.416 2.421 -0.005 9.419 7.871 1.548
363 37:52.3 59:35.5 3373491 -6.001 1.499 1.999 4.2 2.418 2.42 -0.002 9.424 7.839 1.585
364 01:35.6 23:13.0 3382109 -6.001 1.499 1.994 4.2 2.416 2.419 -0.003 9.419 7.799 1.62

167



365 25:13.0 46:51.0 3390727 -6.001 1.499 1.999 4.2 2.416 2.419 -0.003 9.418 7.803 1.615
366 48:51.0 10:20.6 3399336 -6.001 1.499 1.999 4.2 2.413 2.417 -0.004 9.411 7.827 1.584
367 12:20.6 33:51.5 3407947 -6.001 1.499 1.995 4.2 2.414 2.417 -0.003 9.412 7.82 1.592
368 35:51.6 57:11.7 3416548 -6.001 1.499 1.995 4.2 2.411 2.414 -0.003 9.403 7.784 1.619
369 59:11.8 20:24.9 3425141 -6.001 1.499 1.997 4.2 2.409 2.412 -0.003 9.396 7.765 1.631
370 22:24.9 43:31.7 3433728 -6.001 1.499 1.998 4.2 2.407 2.411 -0.004 9.391 7.745 1.646
371 45:31.7 06:41.2 3442317 -6.001 1.499 1.998 4.2 2.408 2.412 -0.004 9.393 7.804 1.589
372 08:41.2 29:52.3 3450908 -6.001 1.499 1.996 4.2 2.408 2.412 -0.004 9.393 7.764 1.629
373 31:52.3 52:58.0 3459494 -6.001 1.499 1.997 4.2 2.407 2.41 -0.003 9.389 7.768 1.621
374 54:58.1 16:03.4 3468079 -6.001 1.499 1.997 4.2 2.407 2.41 -0.003 9.388 7.749 1.639
375 18:03.4 39:00.5 3476656 -6.001 1.5 1.996 4.2 2.404 2.408 -0.004 9.38 7.738 1.642
376 41:00.6 01:58.0 3485234 -6.001 1.499 1.997 4.2 2.404 2.408 -0.004 9.38 7.744 1.636
377 03:58.0 24:45.0 3493801 -6.001 1.499 1.996 4.2 2.402 2.405 -0.003 9.372 7.718 1.654
378 26:45.0 47:30.3 3502366 -6.001 1.5 1.998 4.2 2.401 2.405 -0.004 9.37 7.706 1.664
379 49:30.4 10:18.1 3510934 -6.001 1.499 1.997 4.2 2.402 2.405 -0.003 9.371 7.707 1.664
380 12:18.1 32:55.5 3519491 -6.001 1.499 1.997 4.2 2.399 2.402 -0.003 9.362 7.682 1.68
381 34:55.6 55:28.9 3528045 -6.001 1.499 1.999 4.2 2.398 2.401 -0.003 9.359 7.671 1.688
382 57:28.9 18:07.3 3536603 -6.001 1.499 1.994 4.2 2.399 2.402 -0.003 9.361 7.677 1.684
383 20:07.3 40:42.2 3545158 -6.001 1.499 1.995 4.2 2.398 2.402 -0.004 9.358 7.669 1.689
384 42:42.3 03:16.3 3553712 -6.001 1.499 1.999 4.2 2.397 2.401 -0.004 9.357 7.668 1.689
385 05:16.4 25:49.7 3562265 -6.001 1.499 1.995 4.2 2.397 2.401 -0.004 9.354 7.68 1.674
386 27:49.7 48:25.1 3570821 -6.001 1.5 1.997 4.2 2.398 2.401 -0.003 9.357 7.67 1.687
387 50:25.2 10:55.5 3579371 -6.001 1.5 1.995 4.2 2.396 2.4 -0.004 9.353 7.675 1.678
388 12:55.5 33:26.2 3587922 -6.001 1.499 1.995 4.2 2.396 2.399 -0.003 9.353 7.649 1.704
389 35:26.2 55:42.3 3596458 -6.001 1.499 1.998 4.2 2.392 2.396 -0.004 9.339 7.622 1.717
390 57:42.3 18:03.6 3604999 -6.001 1.499 1.998 4.2 2.394 2.396 -0.002 9.343 7.614 1.729
391 20:03.6 40:23.8 3613540 -6.001 1.5 1.998 4.2 2.393 2.397 -0.004 9.34 7.618 1.722
392 42:23.8 02:59.4 3622095 -6.001 1.499 1.997 4.2 2.397 2.4 -0.003 9.353 7.701 1.652
393 04:59.4 25:55.4 3630671 -6.001 1.499 1.995 4.2 2.401 2.406 -0.005 9.367 7.794 1.573
394 25:55.4 11:46.0 3644222 -1.5 1.5 1.995 4.2 2.4 2.428 -0.028 9.363 8.753 0.61
395 11:46.1 58:30.5 3657826 -1.5 1.5 1.999 4.2 2.422 2.428 -0.006 9.453 8.757 0.696
396 58:30.5 45:16.7 3671432 -1.5 1.5 1.999 4.2 2.423 2.428 -0.005 9.456 8.757 0.699
397 45:16.7 46:16.7 3671493 -1.5 1.5 1.999 4.2 2.423 2.428 -0.005 9.456 8.757 0.699
398 23:30.0 11:04.7 3685157 -1.5 1.5 1.999 4.2 2.417 2.436 -0.019 9.457 8.78 0.677
399 11:04.8 58:30.8 3698803 -1.5 1.5 1.999 4.2 2.433 2.434 -0.001 9.494 8.777 0.717
400 58:30.9 45:46.7 3712439 -1.5 1.5 1.998 4.2 2.43 2.433 -0.003 9.483 8.773 0.71
401 45:46.7 42:55.5 3730268 -6.001 1.5 1.998 4.2 2.43 2.433 -0.003 9.483 8.773 0.71
402 44:55.5 05:56.7 3738849 -6.001 1.5 1.999 4.2 2.405 2.405 0 9.382 7.739 1.643
403 07:56.8 29:09.0 3747441 -6.001 1.5 1.999 4.2 2.406 2.409 -0.003 9.385 7.823 1.562
404 31:09.0 52:01.0 3756014 -6.001 1.499 1.999 4.2 2.401 2.406 -0.005 9.366 7.79 1.576
405 54:01.1 15:22.0 3764615 -6.001 1.5 1.996 4.2 2.408 2.411 -0.003 9.389 7.85 1.539
406 17:22.1 38:30.6 3773203 -6.001 1.5 1.998 4.2 2.406 2.407 -0.001 9.38 7.792 1.588
407 40:30.6 01:23.9 3781776 -6.001 1.499 1.998 4.2 2.401 2.404 -0.003 9.366 7.792 1.574
408 03:23.9 24:19.4 3790352 -6.001 1.499 1.999 4.2 2.401 2.404 -0.003 9.365 7.809 1.556
409 26:19.5 46:59.9 3798912 -6.001 1.499 1.999 4.2 2.397 2.401 -0.004 9.352 7.701 1.651
410 48:59.9 09:48.4 3807481 -6.001 1.499 1.995 4.2 2.399 2.403 -0.004 9.356 7.843 1.513
411 11:48.5 32:43.3 3816056 -6.001 1.5 1.999 4.2 2.401 2.402 -0.001 9.363 7.725 1.638
412 34:43.4 55:18.0 3824611 -6.001 1.5 1.999 4.2 2.395 2.398 -0.003 9.344 7.741 1.603
413 57:18.1 17:47.5 3833160 -6.001 1.5 1.994 4.2 2.393 2.396 -0.003 9.339 7.754 1.585
414 19:47.6 40:24.6 3841717 -6.001 1.499 1.996 4.2 2.394 2.401 -0.007 9.34 7.847 1.493
415 42:24.6 03:15.3 3850288 -6.001 1.499 1.997 4.2 2.399 2.399 0 9.357 7.774 1.583
416 05:15.3 25:32.7 3858825 -6.001 1.499 1.999 4.2 2.389 2.395 -0.006 9.326 7.705 1.621
417 27:32.8 48:12.0 3867384 -6.001 1.499 1.998 4.2 2.395 2.4 -0.005 9.344 7.841 1.503
418 50:12.0 10:59.6 3875952 -6.001 1.499 1.996 4.2 2.398 2.4 -0.002 9.352 7.708 1.644
419 12:59.6 33:29.8 3884502 -6.001 1.5 1.994 4.2 2.393 2.399 -0.006 9.335 7.853 1.482
420 35:29.8 56:23.6 3893076 -6.001 1.499 1.998 4.2 2.399 2.402 -0.003 9.355 7.821 1.534
421 58:23.6 18:59.9 3901632 -6.001 1.499 1.999 4.2 2.395 2.397 -0.002 9.34 7.772 1.568
422 21:00.0 41:27.4 3910180 -6.001 1.5 1.999 4.2 2.392 2.395 -0.003 9.332 7.663 1.669
423 43:27.4 03:38.7 3918711 -6.001 1.5 1.999 4.2 2.388 2.391 -0.003 9.317 7.754 1.563
424 05:38.8 25:46.8 3927239 -6.001 1.499 1.996 4.2 2.387 2.39 -0.003 9.313 7.684 1.629
425 27:46.9 47:54.2 3935767 -6.001 1.499 1.996 4.2 2.386 2.389 -0.003 9.312 7.752 1.56
426 49:54.3 10:07.3 3944300 -6.001 1.5 1.998 4.2 2.386 2.394 -0.008 9.311 7.699 1.612
427 12:07.3 33:18.9 3952891 -6.001 1.5 1.998 4.2 2.401 2.405 -0.004 9.357 7.923 1.434
428 35:18.9 56:23.9 3961476 -6.001 1.5 1.995 4.2 2.4 2.403 -0.003 9.352 7.897 1.455
429 58:24.0 19:18.5 3970051 -6.001 1.499 1.999 4.2 2.397 2.4 -0.003 9.344 7.869 1.475
430 21:18.6 42:07.9 3978620 -6.001 1.5 1.998 4.2 2.395 2.399 -0.004 9.338 7.85 1.488
431 44:08.0 04:50.9 3987183 -6.001 1.5 1.994 4.2 2.394 2.397 -0.003 9.334 7.833 1.501
432 06:50.9 27:32.5 3995745 -6.001 1.499 1.995 4.2 2.394 2.397 -0.003 9.333 7.822 1.511
433 29:32.6 50:17.5 4004310 -6.001 1.499 1.995 4.2 2.395 2.398 -0.003 9.336 7.82 1.516
434 52:17.5 12:57.0 4012870 -6.001 1.499 1.996 4.2 2.393 2.396 -0.003 9.33 7.806 1.524
435 14:57.1 35:38.4 4021431 -6.001 1.5 1.999 4.2 2.393 2.397 -0.004 9.331 7.809 1.522
436 37:38.5 58:15.5 4029988 -6.001 1.499 1.995 4.2 2.392 2.396 -0.004 9.328 7.799 1.529
437 00:15.6 20:59.6 4038552 -6.001 1.5 1.998 4.2 2.394 2.397 -0.003 9.332 7.819 1.513
438 22:59.7 43:43.1 4047116 -6.001 1.5 1.999 4.2 2.394 2.397 -0.003 9.331 7.833 1.498
439 45:43.2 06:27.8 4055680 -6.001 1.5 1.999 4.2 2.394 2.397 -0.003 9.331 7.816 1.515
440 08:27.8 29:06.6 4064239 -6.001 1.499 1.999 4.2 2.392 2.395 -0.003 9.326 7.805 1.521
441 31:06.7 51:44.9 4072797 -6.001 1.499 1.997 4.2 2.392 2.395 -0.003 9.325 7.805 1.52
442 53:44.9 14:28.2 4081361 -6.001 1.499 1.995 4.2 2.393 2.396 -0.003 9.328 7.804 1.524
443 16:28.3 37:02.4 4089915 -6.001 1.499 1.998 4.2 2.39 2.394 -0.004 9.32 7.801 1.519
444 39:02.5 59:49.7 4098482 -6.001 1.499 1.999 4.2 2.393 2.398 -0.005 9.329 7.892 1.437
445 01:49.8 22:48.1 4107061 -6.001 1.5 1.998 4.2 2.396 2.399 -0.003 9.337 7.869 1.468
446 24:48.1 45:35.4 4115628 -6.001 1.499 1.995 4.2 2.394 2.394 0 9.33 7.709 1.621
447 47:35.5 08:02.7 4124175 -6.001 1.5 1.999 4.2 2.387 2.394 -0.007 9.31 7.902 1.408
448 10:02.7 31:11.1 4132764 -6.001 1.499 1.994 4.201 2.398 2.401 -0.003 9.341 7.928 1.413
449 33:11.1 54:20.1 4141353 -6.001 1.499 1.996 4.2 2.397 2.401 -0.004 9.34 7.922 1.418
450 56:20.1 17:24.2 4149937 -6.001 1.5 1.995 4.2 2.396 2.4 -0.004 9.336 7.914 1.422
451 19:24.2 40:24.4 4158517 -6.001 1.5 1.996 4.2 2.395 2.399 -0.004 9.333 7.904 1.429
452 42:24.4 03:19.7 4167092 -6.001 1.499 1.995 4.2 2.394 2.397 -0.003 9.329 7.891 1.438
453 05:19.7 26:08.7 4175661 -6.001 1.499 1.999 4.2 2.392 2.396 -0.004 9.323 7.872 1.451
454 28:08.8 48:48.0 4184221 -6.001 1.499 1.998 4.2 2.39 2.393 -0.003 9.316 7.843 1.473
455 50:48.0 11:16.5 4192769 -6.001 1.499 1.996 4.2 2.387 2.39 -0.003 9.307 7.805 1.502
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456 13:16.5 33:43.8 4201316 -6.001 1.499 1.995 4.2 2.386 2.389 -0.003 9.304 7.835 1.469
457 35:43.9 55:57.5 4209850 -6.001 1.499 1.997 4.2 2.383 2.385 -0.002 9.293 7.751 1.542
458 57:57.5 18:05.6 4218378 -6.001 1.499 1.995 4.2 2.38 2.388 -0.008 9.284 7.877 1.407
459 20:05.6 41:00.0 4226953 -6.001 1.5 1.998 4.2 2.392 2.396 -0.004 9.32 7.909 1.411
460 43:00.1 03:53.3 4235526 -6.001 1.499 1.998 4.2 2.392 2.395 -0.003 9.32 7.903 1.417
461 05:53.3 26:44.8 4244097 -6.001 1.499 1.999 4.2 2.392 2.395 -0.003 9.319 7.895 1.424
462 28:44.8 49:31.9 4252664 -6.001 1.499 1.997 4.2 2.391 2.394 -0.003 9.315 7.88 1.435
463 51:31.9 12:12.2 4261225 -6.001 1.499 1.996 4.2 2.39 2.389 0.001 9.312 7.823 1.489
464 14:12.2 34:11.5 4269744 -6.001 1.499 1.994 4.2 2.378 2.386 -0.008 9.276 7.867 1.409
465 36:11.5 57:00.7 4278313 -6.001 1.499 1.999 4.2 2.391 2.394 -0.003 9.315 7.897 1.418
466 59:00.7 19:47.3 4286880 -6.001 1.499 1.997 4.2 2.39 2.393 -0.003 9.312 7.894 1.418
467 21:47.4 42:32.9 4295445 -6.001 1.499 1.995 4.2 2.39 2.393 -0.003 9.311 7.888 1.423
468 44:33.0 05:14.8 4304007 -6.001 1.499 1.999 4.2 2.389 2.392 -0.003 9.307 7.879 1.428
469 07:14.8 27:53.4 4312566 -6.001 1.499 1.995 4.2 2.388 2.391 -0.003 9.304 7.862 1.442
470 29:53.5 50:10.7 4321103 -6.001 1.499 1.997 4.2 2.383 2.386 -0.003 9.289 7.723 1.566
471 52:10.7 12:31.1 4329644 -6.001 1.5 1.993 4.2 2.383 2.388 -0.005 9.29 7.885 1.405
472 14:31.1 35:14.1 4338207 -6.001 1.499 1.997 4.2 2.388 2.392 -0.004 9.306 7.899 1.407
473 37:14.1 57:57.2 4346770 -6.001 1.499 1.993 4.2 2.388 2.391 -0.003 9.304 7.894 1.41
474 59:57.2 20:37.1 4355330 -6.001 1.499 1.996 4.2 2.387 2.39 -0.003 9.301 7.882 1.419
475 22:37.1 43:10.0 4363883 -6.001 1.499 1.999 4.2 2.385 2.389 -0.004 9.296 7.864 1.432
476 45:10.0 05:34.7 4372427 -6.001 1.5 1.998 4.2 2.384 2.387 -0.003 9.291 7.837 1.454
477 07:34.8 27:41.9 4380954 -6.001 1.499 1.997 4.2 2.38 2.381 -0.001 9.279 7.647 1.632
478 29:42.0 49:30.6 4389463 -6.001 1.499 1.994 4.2 2.374 2.381 -0.007 9.26 7.859 1.401
479 51:30.7 12:03.3 4398016 -6.001 1.499 1.993 4.2 2.385 2.388 -0.003 9.294 7.89 1.404
480 14:03.3 34:34.4 4406567 -6.001 1.499 1.995 4.2 2.385 2.388 -0.003 9.292 7.885 1.407
481 36:34.5 57:03.1 4415116 -6.001 1.499 1.998 4.2 2.384 2.387 -0.003 9.289 7.877 1.412
482 59:03.1 19:27.0 4423660 -6.001 1.499 1.995 4.2 2.383 2.386 -0.003 9.284 7.866 1.418
483 21:27.1 41:46.5 4432199 -6.001 1.5 1.998 4.2 2.381 2.383 -0.002 9.28 7.834 1.446
484 43:46.6 03:27.2 4440700 -6.001 1.499 1.999 4.2 2.372 2.373 -0.001 9.251 7.599 1.652
485 05:27.3 25:02.7 4449195 -6.001 1.499 1.995 4.2 2.369 2.376 -0.007 9.242 7.829 1.413
486 27:02.7 47:16.1 4457729 -6.001 1.499 1.998 4.2 2.379 2.382 -0.003 9.273 7.852 1.421
487 49:16.1 09:29.7 4466262 -6.001 1.5 1.995 4.2 2.379 2.382 -0.003 9.273 7.844 1.429
488 11:29.8 31:39.6 4474792 -6.001 1.499 1.995 4.2 2.378 2.381 -0.003 9.271 7.823 1.448
489 33:39.7 53:39.6 4483312 -6.001 1.499 1.994 4.2 2.376 2.379 -0.003 9.264 7.787 1.477
490 55:39.7 15:23.8 4491816 -6.001 1.499 1.999 4.2 2.373 2.373 0 9.253 7.684 1.569
491 17:23.8 36:56.5 4500309 -6.001 1.5 1.993 4.2 2.368 2.375 -0.007 9.239 7.831 1.408
492 38:56.6 59:06.7 4508839 -6.001 1.5 1.994 4.2 2.378 2.381 -0.003 9.269 7.855 1.414
493 01:06.7 21:18.9 4517371 -6.001 1.5 1.995 4.2 2.378 2.382 -0.004 9.269 7.855 1.414
494 23:19.0 43:29.5 4525902 -6.001 1.499 1.995 4.2 2.378 2.381 -0.003 9.267 7.851 1.416
495 45:29.6 05:37.4 4534430 -6.001 1.499 1.995 4.2 2.377 2.38 -0.003 9.265 7.844 1.421
496 07:37.5 27:45.5 4542958 -6.001 1.5 1.997 4.2 2.377 2.38 -0.003 9.264 7.836 1.428
497 29:45.5 49:43.7 4551476 -6.001 1.499 1.995 4.2 2.374 2.378 -0.004 9.257 7.809 1.448
498 51:43.8 11:32.4 4559985 -6.001 1.499 1.996 4.2 2.372 2.375 -0.003 9.25 7.775 1.475
499 13:32.5 33:09.9 4568482 -6.001 1.5 1.994 4.2 2.369 2.372 -0.003 9.241 7.724 1.517
500 35:10.0 54:36.7 4576969 -6.001 1.499 1.999 4.2 2.367 2.368 -0.001 9.233 7.704 1.529
501 56:36.8 15:55.8 4585448 -6.001 1.499 1.994 4.2 2.364 2.37 -0.006 9.222 7.788 1.434
502 17:55.8 37:38.5 4593951 -6.001 1.499 1.996 4.2 2.37 2.373 -0.003 9.243 7.765 1.478
503 39:38.6 59:11.3 4602444 -6.001 1.5 1.995 4.2 2.367 2.373 -0.006 9.233 7.794 1.439
504 01:11.3 22:19.8 4611032 -6.001 1.499 1.998 4.2 2.387 2.391 -0.004 9.294 7.98 1.314
505 24:19.9 45:28.0 4619620 -6.001 1.499 1.993 4.2 2.387 2.391 -0.004 9.292 7.981 1.311
506 47:28.0 08:36.4 4628209 -6.001 1.499 1.996 4.2 2.387 2.39 -0.003 9.292 7.981 1.311
507 10:36.4 31:43.1 4636796 -6.001 1.5 1.998 4.2 2.387 2.39 -0.003 9.29 7.98 1.31
508 33:43.2 54:49.3 4645382 -6.001 1.5 1.995 4.2 2.386 2.39 -0.004 9.289 7.98 1.309
509 56:49.3 17:54.0 4653967 -6.001 1.5 1.997 4.2 2.386 2.389 -0.003 9.287 7.978 1.309
510 19:54.1 40:57.7 4662550 -6.001 1.499 1.996 4.2 2.385 2.389 -0.004 9.285 7.976 1.309
511 42:57.8 04:00.8 4671133 -6.001 1.499 1.993 4.2 2.385 2.388 -0.003 9.283 7.975 1.308
512 06:00.8 27:01.7 4679714 -6.001 1.499 1.995 4.2 2.384 2.388 -0.004 9.282 7.973 1.309
513 29:01.8 50:01.6 4688294 -6.001 1.499 1.993 4.2 2.384 2.387 -0.003 9.28 7.953 1.327
514 52:01.7 12:37.6 4696850 -6.001 1.499 1.993 4.2 2.379 2.383 -0.004 9.272 7.92 1.352
515 14:37.7 34:55.6 4705388 -6.001 1.499 1.997 4.2 2.375 2.378 -0.003 9.253 7.863 1.39
516 36:55.6 56:45.6 4713898 -6.001 1.499 1.999 4.2 2.369 2.373 -0.004 9.235 7.844 1.391
517 58:45.6 18:32.4 4722405 -6.001 1.5 1.996 4.2 2.369 2.372 -0.003 9.233 7.841 1.392
518 20:32.5 40:15.9 4730908 -6.001 1.499 1.997 4.2 2.368 2.371 -0.003 9.229 7.84 1.389
519 42:15.9 01:59.0 4739411 -6.001 1.499 1.999 4.2 2.367 2.37 -0.003 9.227 7.841 1.386
520 03:59.0 23:42.4 4747915 -6.001 1.499 1.997 4.2 2.367 2.37 -0.003 9.226 7.844 1.382
521 25:42.5 45:25.6 4756418 -6.001 1.499 1.998 4.2 2.367 2.37 -0.003 9.225 7.843 1.382
522 47:25.6 07:07.9 4764920 -6.001 1.499 1.998 4.2 2.366 2.37 -0.004 9.224 7.845 1.379
523 09:07.9 28:48.0 4773421 -6.001 1.5 1.998 4.2 2.366 2.369 -0.003 9.221 7.841 1.38
524 30:48.1 50:27.6 4781920 -6.001 1.499 1.999 4.2 2.365 2.369 -0.004 9.22 7.843 1.377
525 52:27.7 12:07.4 4790420 -6.001 1.499 1.997 4.2 2.365 2.368 -0.003 9.219 7.844 1.375
526 12:07.4 55:33.6 4803826 -1.5 1.5 1.997 4.201 2.365 2.386 -0.021 9.218 8.638 0.58
527 55:33.7 39:36.7 4817269 -1.5 1.5 1.998 4.2 2.381 2.387 -0.006 9.288 8.64 0.648
528 39:36.7 23:40.1 4830713 -1.5 1.5 1.998 4.2 2.382 2.386 -0.004 9.291 8.638 0.653
529 23:40.1 24:40.2 4830773 -1.5 1.5 1.998 4.2 2.382 2.386 -0.004 9.291 8.638 0.653
530 09:49.0 50:06.1 4844000 -1.501 1.5 1.999 4.2 2.322 2.352 -0.03 9.137 8.446 0.691
531 50:06.2 31:16.2 4857270 -1.5 1.5 1.998 4.201 2.357 2.356 0.001 9.223 8.466 0.757
532 31:16.2 12:26.2 4870540 -1.501 1.5 1.999 4.2 2.355 2.356 -0.001 9.214 8.473 0.741
533 12:26.2 02:57.9 4887972 -6.001 1.5 1.996 4.2 2.355 2.356 -0.001 9.214 8.473 0.741
534 04:57.9 23:05.5 4896379 -6.001 1.5 1.998 4.2 2.345 2.346 -0.001 9.16 7.651 1.509
535 25:05.5 43:05.7 4904779 -6.001 1.499 1.993 4.2 2.343 2.344 -0.001 9.15 7.647 1.503
536 45:05.7 03:19.1 4913193 -6.001 1.499 1.997 4.2 2.346 2.347 -0.001 9.159 7.667 1.492
537 05:19.2 23:27.7 4921601 -6.001 1.5 1.999 4.2 2.344 2.346 -0.002 9.153 7.663 1.49
538 25:27.8 43:43.0 4930017 -6.001 1.5 1.995 4.2 2.345 2.347 -0.002 9.156 7.676 1.48
539 45:43.0 04:02.4 4938436 -6.001 1.499 1.995 4.2 2.346 2.348 -0.002 9.156 7.685 1.471
540 06:02.5 24:24.9 4946859 -6.001 1.499 1.994 4.201 2.346 2.348 -0.002 9.157 7.694 1.463
541 26:24.9 44:48.2 4955282 -6.001 1.499 1.997 4.2 2.346 2.348 -0.002 9.156 7.699 1.457
542 46:48.2 05:14.0 4963708 -6.001 1.499 1.997 4.2 2.346 2.349 -0.003 9.158 7.707 1.451
543 07:14.1 25:41.3 4972135 -6.001 1.499 1.994 4.2 2.347 2.349 -0.002 9.158 7.712 1.446
544 27:41.4 46:10.5 4980564 -6.001 1.499 1.993 4.2 2.347 2.35 -0.003 9.158 7.716 1.442
545 48:10.5 06:32.6 4988986 -6.001 1.499 1.995 4.201 2.345 2.347 -0.002 9.15 7.706 1.444
546 08:32.6 26:57.6 4997411 -6.001 1.499 1.994 4.2 2.345 2.348 -0.003 9.152 7.712 1.44
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547 28:57.7 47:19.1 5005833 -6.001 1.5 1.995 4.2 2.344 2.347 -0.003 9.148 7.711 1.437
548 49:19.1 07:44.7 5014258 -6.001 1.5 1.993 4.2 2.345 2.348 -0.003 9.149 7.716 1.433
549 09:44.7 28:09.9 5022684 -6.001 1.499 1.997 4.2 2.345 2.347 -0.002 9.148 7.718 1.43
550 30:09.9 48:34.7 5031108 -6.001 1.5 1.999 4.2 2.344 2.347 -0.003 9.147 7.722 1.425
551 50:34.7 08:59.7 5039533 -6.001 1.5 1.995 4.2 2.344 2.347 -0.003 9.146 7.722 1.424
552 10:59.7 29:23.8 5047958 -6.001 1.5 1.996 4.2 2.344 2.347 -0.003 9.144 7.724 1.42
553 31:23.9 49:48.3 5056382 -6.001 1.499 1.998 4.2 2.343 2.346 -0.003 9.143 7.725 1.418
554 51:48.3 10:12.6 5064806 -6.001 1.5 1.998 4.2 2.343 2.346 -0.003 9.142 7.726 1.416
555 12:12.7 30:36.6 5073230 -6.001 1.5 1.993 4.2 2.343 2.346 -0.003 9.14 7.727 1.413
556 32:36.7 50:59.8 5081654 -6.001 1.5 1.998 4.2 2.342 2.345 -0.003 9.138 7.727 1.411
557 52:59.8 11:22.3 5090076 -6.001 1.499 1.993 4.2 2.342 2.345 -0.003 9.136 7.727 1.409
558 13:22.3 31:43.7 5098497 -6.001 1.499 1.995 4.2 2.342 2.344 -0.002 9.135 7.727 1.408
559 33:43.8 52:04.4 5106918 -6.001 1.499 1.995 4.2 2.341 2.344 -0.003 9.133 7.727 1.406
560 54:04.5 12:25.2 5115339 -6.001 1.499 1.997 4.2 2.341 2.344 -0.003 9.132 7.727 1.405
561 14:25.2 32:43.6 5123757 -6.001 1.499 1.999 4.2 2.34 2.343 -0.003 9.129 7.725 1.404
562 34:43.7 53:01.5 5132175 -6.001 1.499 1.995 4.2 2.34 2.343 -0.003 9.127 7.726 1.401
563 55:01.6 13:19.1 5140593 -6.001 1.499 1.995 4.2 2.339 2.342 -0.003 9.126 7.726 1.4
564 15:19.2 33:35.4 5149009 -6.001 1.499 1.992 4.2 2.339 2.342 -0.003 9.125 7.727 1.398
565 35:35.5 53:51.7 5157425 -6.001 1.499 1.999 4.2 2.339 2.342 -0.003 9.124 7.727 1.397
566 55:51.7 14:06.0 5165840 -6.001 1.499 1.994 4.2 2.338 2.341 -0.003 9.121 7.725 1.396
567 16:06.0 34:19.5 5174253 -6.001 1.499 1.997 4.2 2.338 2.341 -0.003 9.119 7.725 1.394
568 36:19.5 54:31.3 5182665 -6.001 1.499 1.999 4.2 2.337 2.34 -0.003 9.117 7.724 1.393
569 56:31.4 14:40.3 5191074 -6.001 1.499 1.995 4.2 2.336 2.339 -0.003 9.114 7.721 1.393
570 16:40.4 34:47.1 5199481 -6.001 1.499 1.999 4.2 2.335 2.338 -0.003 9.111 7.718 1.393
571 36:47.1 54:52.3 5207886 -6.001 1.5 1.999 4.2 2.335 2.338 -0.003 9.109 7.716 1.393
572 56:52.4 14:55.2 5216289 -6.001 1.5 1.995 4.2 2.334 2.337 -0.003 9.106 7.715 1.391
573 16:55.3 34:57.9 5224692 -6.001 1.499 1.998 4.2 2.334 2.336 -0.002 9.104 7.712 1.392
574 36:57.9 54:58.4 5233092 -6.001 1.499 1.999 4.2 2.333 2.336 -0.003 9.102 7.711 1.391
575 56:58.4 14:57.7 5241491 -6.001 1.5 1.994 4.2 2.332 2.335 -0.003 9.1 7.711 1.389
576 16:57.7 34:55.8 5249890 -6.001 1.5 1.998 4.201 2.332 2.335 -0.003 9.098 7.709 1.389
577 36:55.9 54:52.2 5258286 -6.001 1.5 1.995 4.2 2.331 2.334 -0.003 9.095 7.709 1.386
578 56:52.3 14:46.0 5266680 -6.001 1.499 1.999 4.2 2.331 2.334 -0.003 9.093 7.707 1.386
579 16:46.1 34:40.0 5275074 -6.001 1.5 1.993 4.2 2.33 2.333 -0.003 9.091 7.707 1.384
580 36:40.1 54:32.6 5283466 -6.001 1.5 1.999 4.201 2.33 2.333 -0.003 9.089 7.705 1.384
581 56:32.6 14:23.8 5291857 -6.001 1.5 1.992 4.2 2.329 2.332 -0.003 9.086 7.704 1.382
582 16:23.8 34:14.2 5300248 -6.001 1.499 1.996 4.2 2.329 2.332 -0.003 9.085 7.703 1.382
583 36:14.3 54:03.9 5308638 -6.001 1.499 1.992 4.201 2.328 2.331 -0.003 9.083 7.703 1.38
584 56:04.0 13:52.0 5317026 -6.001 1.499 1.999 4.2 2.328 2.33 -0.002 9.081 7.701 1.38
585 15:52.0 33:39.5 5325413 -6.001 1.499 1.991 4.201 2.327 2.33 -0.003 9.079 7.702 1.377
586 35:39.6 53:24.9 5333799 -6.001 1.5 1.993 4.2 2.327 2.33 -0.003 9.078 7.7 1.378
587 55:24.9 13:09.2 5342183 -6.001 1.5 1.992 4.2 2.326 2.329 -0.003 9.076 7.7 1.376
588 15:09.2 32:51.7 5350565 -6.001 1.5 1.999 4.201 2.326 2.328 -0.002 9.073 7.697 1.376
589 34:51.7 52:30.9 5358945 -6.001 1.499 1.998 4.2 2.325 2.328 -0.003 9.069 7.695 1.374
590 54:31.0 12:09.2 5367323 -6.001 1.499 1.999 4.2 2.324 2.327 -0.003 9.067 7.694 1.373
591 14:09.2 31:45.6 5375699 -6.001 1.499 1.995 4.2 2.323 2.326 -0.003 9.064 7.692 1.372
592 33:45.7 51:20.4 5384074 -6.001 1.499 1.997 4.2 2.323 2.326 -0.003 9.062 7.691 1.371
593 53:20.4 10:53.9 5392448 -6.001 1.499 1.993 4.2 2.322 2.325 -0.003 9.06 7.69 1.37
594 12:53.9 30:26.3 5400820 -6.001 1.499 1.994 4.2 2.322 2.325 -0.003 9.058 7.687 1.371
595 32:26.4 49:56.8 5409191 -6.001 1.499 1.994 4.2 2.321 2.324 -0.003 9.055 7.686 1.369
596 51:56.9 09:25.7 5417559 -6.001 1.499 1.996 4.2 2.32 2.323 -0.003 9.053 7.684 1.369
597 11:25.7 28:52.2 5425926 -6.001 1.499 1.994 4.2 2.32 2.323 -0.003 9.05 7.682 1.368
598 30:52.3 48:16.3 5434290 -6.001 1.499 1.993 4.2 2.319 2.322 -0.003 9.047 7.68 1.367
599 50:16.4 07:38.7 5442652 -6.001 1.499 1.995 4.2 2.318 2.321 -0.003 9.045 7.678 1.367
600 09:38.7 27:00.7 5451014 -6.001 1.5 1.992 4.2 2.318 2.321 -0.003 9.043 7.676 1.367
601 29:00.8 46:21.8 5459376 -6.001 1.499 1.995 4.2 2.317 2.32 -0.003 9.041 7.674 1.367
602 48:21.9 05:41.3 5467735 -6.001 1.499 1.992 4.2 2.317 2.32 -0.003 9.038 7.673 1.365
603 07:41.4 24:58.6 5476092 -6.001 1.499 1.993 4.2 2.316 2.319 -0.003 9.037 7.671 1.366
604 26:58.7 44:14.6 5484448 -6.001 1.5 1.994 4.2 2.316 2.319 -0.003 9.035 7.67 1.365
605 46:14.6 03:30.1 5492804 -6.001 1.499 1.993 4.2 2.315 2.318 -0.003 9.033 7.669 1.364
606 05:30.1 22:43.5 5501157 -6.001 1.499 1.998 4.2 2.314 2.317 -0.003 9.031 7.667 1.364
607 24:43.6 41:54.7 5509508 -6.001 1.499 1.993 4.2 2.314 2.317 -0.003 9.028 7.665 1.363
608 43:54.8 01:03.7 5517857 -6.001 1.499 1.995 4.201 2.313 2.316 -0.003 9.027 7.663 1.364
609 03:03.7 20:10.8 5526204 -6.001 1.499 1.996 4.2 2.313 2.316 -0.003 9.024 7.662 1.362
610 22:10.8 39:04.6 5534538 -6.001 1.499 1.993 4.2 2.309 2.312 -0.003 9.012 7.639 1.373
611 41:04.6 58:01.5 5542875 -6.001 1.499 1.994 4.2 2.31 2.313 -0.003 9.014 7.643 1.371
612 00:01.5 16:56.8 5551210 -6.001 1.499 1.998 4.2 2.309 2.312 -0.003 9.011 7.642 1.369
613 18:56.8 35:47.9 5559542 -6.001 1.499 1.996 4.2 2.308 2.311 -0.003 9.008 7.64 1.368
614 37:48.0 54:40.2 5567874 -6.001 1.499 1.995 4.2 2.308 2.311 -0.003 9.007 7.639 1.368
615 56:40.2 13:31.1 5576205 -6.001 1.499 1.998 4.2 2.307 2.31 -0.003 9.005 7.637 1.368
616 15:31.2 32:19.5 5584533 -6.001 1.499 1.995 4.2 2.307 2.31 -0.003 9.002 7.635 1.367
617 34:19.6 50:52.3 5592846 -6.001 1.499 1.995 4.2 2.303 2.305 -0.002 8.988 7.605 1.383
618 52:52.3 09:26.4 5601160 -6.001 1.499 1.996 4.2 2.303 2.306 -0.003 8.989 7.609 1.38
619 11:26.4 27:59.7 5609473 -6.001 1.499 1.993 4.2 2.302 2.305 -0.003 8.988 7.609 1.379
620 29:59.8 46:32.4 5617786 -6.001 1.499 1.997 4.2 2.302 2.305 -0.003 8.986 7.608 1.378
621 48:32.4 05:03.1 5626097 -6.001 1.499 1.995 4.2 2.301 2.304 -0.003 8.983 7.608 1.375
622 07:03.2 23:33.1 5634407 -6.001 1.499 1.996 4.2 2.301 2.304 -0.003 8.982 7.607 1.375
623 25:33.2 42:01.6 5642715 -6.001 1.499 1.997 4.2 2.3 2.303 -0.003 8.98 7.605 1.375
624 44:01.6 00:27.8 5651021 -6.001 1.5 1.995 4.2 2.3 2.302 -0.002 8.977 7.602 1.375
625 02:27.8 18:52.5 5659326 -6.001 1.499 1.996 4.2 2.299 2.302 -0.003 8.975 7.6 1.375
626 20:52.6 37:14.5 5667628 -6.001 1.499 1.996 4.201 2.298 2.301 -0.003 8.972 7.597 1.375
627 39:14.5 55:34.5 5675928 -6.001 1.499 1.993 4.2 2.298 2.301 -0.003 8.969 7.595 1.374
628 57:34.6 13:50.7 5684224 -6.001 1.499 1.996 4.2 2.297 2.298 -0.001 8.967 7.575 1.392
629 15:50.7 30:25.4 5692419 -6.001 1.499 1.995 4.2 2.27 2.272 -0.002 8.881 7.369 1.512
630 32:25.4 47:06.7 5700620 -6.001 1.499 1.999 4.2 2.272 2.275 -0.003 8.888 7.362 1.526
631 49:06.8 03:53.2 5708827 -6.001 1.499 1.998 4.2 2.273 2.276 -0.003 8.891 7.352 1.539
632 05:53.3 20:36.2 5717030 -6.001 1.499 1.999 4.2 2.272 2.275 -0.003 8.886 7.347 1.539
633 22:36.2 37:15.6 5725229 -6.001 1.499 1.996 4.2 2.27 2.273 -0.003 8.882 7.347 1.535
634 39:15.7 53:50.2 5733424 -6.001 1.499 1.993 4.2 2.269 2.272 -0.003 8.876 7.339 1.537
635 55:50.3 10:15.9 5741610 -6.001 1.499 1.994 4.2 2.266 2.269 -0.003 8.868 7.322 1.546
636 12:16.0 26:36.5 5749790 -6.001 1.499 1.996 4.2 2.265 2.267 -0.002 8.862 7.317 1.545
637 28:36.5 42:54.8 5757969 -6.001 1.499 1.999 4.2 2.264 2.267 -0.003 8.859 7.306 1.553
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638 44:54.9 59:05.7 5766139 -6.001 1.499 1.994 4.2 2.262 2.265 -0.003 8.852 7.296 1.556
639 01:05.7 15:14.9 5774309 -6.001 1.499 1.995 4.2 2.261 2.264 -0.003 8.85 7.294 1.556
640 17:15.0 31:21.5 5782475 -6.001 1.499 1.994 4.2 2.26 2.263 -0.003 8.847 7.293 1.554
641 33:21.6 47:27.8 5790642 -6.001 1.499 1.999 4.2 2.26 2.263 -0.003 8.846 7.293 1.553
642 49:27.9 03:31.4 5798805 -6.001 1.5 1.999 4.2 2.259 2.262 -0.003 8.842 7.286 1.556
643 05:31.4 19:34.3 5806968 -6.001 1.499 1.995 4.2 2.259 2.262 -0.003 8.841 7.286 1.555
644 21:34.4 35:33.5 5815127 -6.001 1.499 1.995 4.2 2.258 2.261 -0.003 8.837 7.282 1.555
645 37:33.6 51:28.7 5823282 -6.001 1.5 1.995 4.2 2.256 2.259 -0.003 8.832 7.275 1.557
646 53:28.7 07:20.5 5831434 -6.001 1.499 1.999 4.201 2.255 2.258 -0.003 8.829 7.278 1.551
647 09:20.5 23:07.8 5839581 -6.001 1.499 1.997 4.2 2.254 2.257 -0.003 8.824 7.271 1.553
648 25:07.8 38:52.5 5847726 -6.001 1.499 1.998 4.2 2.253 2.256 -0.003 8.819 7.269 1.55
649 40:52.5 54:34.8 5855869 -6.001 1.499 1.998 4.2 2.252 2.255 -0.003 8.816 7.263 1.553
650 56:34.8 10:16.6 5864010 -6.001 1.499 1.998 4.2 2.251 2.254 -0.003 8.814 7.261 1.553
651 12:16.6 25:53.7 5872147 -6.001 1.499 1.995 4.201 2.25 2.253 -0.003 8.81 7.253 1.557
652 27:53.7 41:27.8 5880282 -6.001 1.499 1.998 4.2 2.249 2.252 -0.003 8.807 7.255 1.552
653 43:27.8 57:00.3 5888414 -6.001 1.499 1.994 4.2 2.249 2.252 -0.003 8.804 7.251 1.553
654 59:00.4 12:30.8 5896544 -6.001 1.5 1.998 4.2 2.248 2.251 -0.003 8.802 7.239 1.563
655 14:30.8 27:57.0 5904671 -6.001 1.499 1.995 4.2 2.247 2.25 -0.003 8.797 7.232 1.565
656 29:57.0 43:19.5 5912793 -6.001 1.5 1.994 4.2 2.245 2.248 -0.003 8.793 7.225 1.568
657 45:19.5 58:39.8 5920914 -6.001 1.499 1.997 4.2 2.245 2.247 -0.002 8.79 7.225 1.565
658 58:39.8 31:57.8 5933712 -1.501 1.5 1.997 4.2 2.243 2.263 -0.02 8.784 8.144 0.64
659 31:57.9 05:56.4 5946550 -1.5 1.5 1.998 4.2 2.259 2.264 -0.005 8.855 8.15 0.705
660 05:56.4 39:53.1 5959387 -1.5 1.5 1.999 4.2 2.259 2.264 -0.005 8.854 8.147 0.707
661 39:53.1 40:53.2 5959447 0 0 2.774 2.786 0 0 0 0 0 0
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SUMMARY OUTPUT
SNL_18650_NMC_15C_0-100_0.5-1C_a_cycle

Regression Statistics
Multiple R 0.789261713
R Square 0.622934051
Adjusted R Square 0.622194706
Standard Error 0.203025141
Observations 512

ANOVA
df SS MS F Significance F

Regression 1 34.7291835 34.7291835 842.5485 4.3314E-110
Residual 510 21.021796 0.041219208
Total 511 55.7509795

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 2.511383315 0.01795817 139.846285 0 2.476102221 2.546664409 2.476102221 2.546664409
X Variable 1 -0.001756963 6.05292E-05 -29.02668674 4.3E-110 -0.001875881 -0.001638046 -0.001875881 -0.001638046

SNL_18650_NMC_25C_0-100_0.5-1C_a_cycle
Regression Statistics

Multiple R 0.451260683
R Square 0.203636204
Adjusted R Square 0.202098822
Standard Error 0.278720061
Observations 520

ANOVA
df SS MS F Significance F

Regression 1 10.28986559 10.28986559 132.4565 1.88283E-27
Residual 518 40.24076391 0.077684872
Total 519 50.53062951

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 2.781920375 0.024463509 113.7171456 0 2.733860486 2.829980263 2.733860486 2.829980263
X Variable 1 -0.000934415 8.11902E-05 -11.50897436 1.88E-27 -0.001093918 -0.000774913 -0.001093918 -0.000774913

SNL_18650_NMC_35C_0-100_0.5-1C_a_cycle
Regression Statistics

Multiple R 0.412748197
R Square 0.170361074
Adjusted R Square 0.169301509
Standard Error 0.286600473
Observations 785

ANOVA
df SS MS F Significance F

Regression 1 13.20677611 13.20677611 160.7841 1.2069E-33
Residual 783 64.31548775 0.082139831
Total 784 77.52226386

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 2.717474075 0.020478405 132.6994976 0 2.677275 2.75767315 2.677275 2.75767315
X Variable 1 -0.000571418 4.50643E-05 -12.68006574 1.21E-33 -0.00065988 -0.000482957 -0.00065988 -0.000482957
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SNL_18650_NMC_15C_0-100_0.5-1C_b_cycle
Regression Statistics

Multiple R 0.794820495
R Square 0.63173962
Adjusted R Square 0.631017541
Standard Error 0.195068034
Observations 512

ANOVA
df SS MS F Significance F

Regression 1 33.29089793 33.29089793 874.8897 1.0392E-112
Residual 510 19.40628438 0.038051538
Total 511 52.6971823

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 2.494196066 0.01725434 144.5547052 0 2.460297735 2.528094398 2.460297735 2.528094398
X Variable 1 -0.001720197 5.81569E-05 -29.57853412 1E-112 -0.001834454 -0.00160594 -0.001834454 -0.00160594

SNL_18650_NMC_25C_0-100_0.5-1C_b_cycle
Regression Statistics

Multiple R 0.40920751
R Square 0.167450786
Adjusted R Square 0.166386145
Standard Error 0.283939506
Observations 784

ANOVA
df SS MS F Significance F

Regression 1 12.68047943 12.68047943 157.2838 5.25798E-33
Residual 782 63.04612482 0.080621643
Total 783 75.72660425

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 2.677018678 0.020301299 131.8644002 0 2.637167183 2.716870174 2.637167183 2.716870174
X Variable 1 -0.000560989 4.47314E-05 -12.54128435 5.26E-33 -0.000648796 -0.000473181 -0.000648796 -0.000473181

SNL_18650_NMC_35C_0-100_0.5-1C_b_cycle
Regression Statistics

Multiple R 0.39060905
R Square 0.15257543
Adjusted R Square 0.151493151
Standard Error 0.284714616
Observations 785

ANOVA
df SS MS F Significance F

Regression 1 11.42785803 11.42785803 140.976 5.14896E-30
Residual 783 63.47186885 0.081062412
Total 784 74.89972687

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 2.70168824 0.020343655 132.8024975 0 2.661753679 2.741622802 2.661753679 2.741622802
X Variable 1 -0.000531543 4.47678E-05 -11.87333322 5.15E-30 -0.000619422 -0.000443664 -0.000619422 -0.000443664
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DecisionTreeRegressor 

Decision Trees work by recursively splitting the dataset into subsets based on the most significant 
features that reduce a specific loss function (such as Mean Squared Error for regression or Gini Impurity 
for classification). At each node, the tree chooses a feature and a threshold to split the data in a way that 
results in the most homogeneous subgroups. This process continues until the tree reaches a maximum 
depth or no further meaningful splits can be made, leading to predictions based on the average value of 
the outcomes in the final leaf nodes. 

The Decision Tree Regressor is best applied in situations where the data has non-linear relationships 
and complex interactions between features, yet interpretability is important. 

Syntax: 

class sklearn.tree.DecisionTreeRegressor(*, criterion='squared_error', 
splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, max_features=None, random_state=None, 
max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0, 
monotonic_cst=None) 

Hyperparameters used or tested 

Criterion: {“squared_error”} 

Specifies the function to measure the quality of a split. Mean squared error is typically 
used in regression. 

Splitter: {“best”} 

The strategy used to choose the split at each node. Supported strategies are “best” to 
choose the best split and “random” to choose the best random split. 

max_depthint, default=None 

Limits the maximum depth of the tree. Prevents overfitting by restricting the number of 
splits, ensuring that the model doesn’t become overly complex. 

Min_samples_split, default=2 

Specifies the minimum number of samples required to split a node. Higher values 
prevent splitting small nodes and can reduce overfitting. 

min_samples_leaf, default=1 

The minimum number of samples required to be at a leaf node. A split point at any 
depth will only be considered if it leaves at least min_samples_leaf training samples in 
each of the left and right branches. This may have the effect of smoothing the model, 
especially in regression. 
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RandomForestRegressor 

The Random Forest Regressor works by constructing multiple decision trees on different 
subsets of the dataset and averaging their predictions to improve accuracy and reduce 
overfitting. Each tree is trained on a random sample of the data with random subsets of 
features, which helps in capturing complex patterns while being robust against noise. 
This ensemble method leverages the diversity of individual trees to enhance overall 
performance. 

The best use cases for Random Forest Regressor include predicting complex, non-linear 
relationships, where high accuracy and robustness are essential. 

Syntax 

class sklearn.ensemble.RandomForestRegressor(n_estimators=100, *, 
criterion='squared_error', max_depth=None, min_samples_split=2, 
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, 
max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, 
oob_score=False, n_jobs=None, random_state=None, verbose=0, 
warm_start=False, ccp_alpha=0.0, max_samples=None, monotonic_cst=None) 

 

n_estimators, default=100 

The number of trees in the forest. A higher number of trees generally improves 
performance but increases computational cost. 

Criterion, {“squared_error”} 

The function to measure the quality of a split. 

max_depth, default=None 

The maximum depth of the tree. Controls overfitting by preventing trees from growing 
too complex. 

min_samples_split, default=2 

The minimum number of samples required to split an internal node: Larger values 
reduce overfitting by preventing the model from creating small splits. 

min_samples_leaf, default=1 

The minimum number of samples required to be at a leaf node. Higher values help 
create more generalized trees, reducing the chance of overfitting. 

Bootstrap bool, default=True 
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Whether bootstrap samples are used when building trees. If False, the whole dataset is 
used to build each tree. 
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KNeighborsClassifier 

The KNeighbors Regressor works by predicting the value of a data point based on the 
average (or weighted average) of its nearest neighbors in the feature space. It uses a 

distance metric (like Euclidean distance) to identify the k closest data points and then 
combines their values to make a prediction. This method is non-parametric and can 

capture local patterns in the data, making it flexible but sensitive to the choice of k and 
the distance metric. 

The best use cases for KNeighbors Regressor include scenarios with small to medium-
sized datasets where the relationship between variables is complex but the data is 
relatively smooth. 

Syntax 

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, *, weights='uniform', 
algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, 
n_jobs=None) 

Parameters: 

n_neighborsint, default=5 

Number of neighbors to use by default for kneighbors queries. 

weights{‘uniform’, ‘distance’}, callable or None, default=’uniform’ 

Weight function used in prediction. Possible values: 

● ‘uniform’ : uniform weights. All points in each neighborhood are weighted 
equally. 

● ‘distance’ : weight points by the inverse of their distance. in this case, closer 
neighbors of a query point will have a greater influence than neighbors which are 
further away. 
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LinearRegression 

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, copy_X=True, 
n_jobs=None, positive=False) 

Linear Regression works by modeling the relationship between a dependent variable 
and one or more independent variables using a linear equation. It aims to find the best-
fitting line or hyperplane that minimizes the difference between predicted and actual 
values, typically using methods like Ordinary Least Squares (OLS). This straightforward 
approach makes it easy to interpret and understand the relationship between variables. 

Best use cases for linear regression include scenarios where the relationship between 
variables is expected to be linear. It’s ideal for problems with a clear, linear relationship 
and when interpretability is important. 

 

Attributes: 

coef_array of shape (n_features, ) or (n_targets, n_features) 

Estimated coefficients for the linear regression problem. If multiple targets are passed 
during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only one 
target is passed, this is a 1D array of length n_features. 

rank_int 

Rank of matrix X. Only available when X is dense. 

singular_array of shape (min(X, y),) 

Singular values of X. Only available when X is dense. 

intercept_float or array of shape (n_targets,) 

Independent term in the linear model. Set to 0.0 if fit_intercept = False. 

n_features_in_int 

Number of features seen during fit. 

GRID SEARCH CV 

GridSearchCV is the process of performing hyperparameter tuning in order to 
determine the optimal values for a given model. Doing this manually could take a 
considerable amount of time and resources and thus we use GridSearchCV to 
automate the tuning of hyperparameters. 

Parameters 

186



1.estimator: Pass the model instance for which you want to check the 
hyperparameters. 

2.params_grid: the dictionary object that holds the hyperparameters you want to try 

3.scoring: evaluation metric that you want to use, you can simply pass a valid string/ 
object of evaluation metric 

4.cv: number of cross-validation you have to try for each selected set of 
hyperparameters 

5.verbose: you can set it to 1 to get the detailed print out while you fit the data to 
GridSearchCV 

Working 

1. Grid Definition: You define a grid of possible hyperparameter values for the 
model.  

2. 2. Exhaustive Search: GridSearchCV tries every possible combination of these 
hyperparameters and evaluates the model using cross-validation on the training 
data. 

3. Performance Evaluation: For each combination, the model is evaluated using the 
specified scoring metric (e.g., accuracy, mean squared error). The cross-validation 
ensures that the model is assessed on different subsets of data, reducing the risk of 
overfitting to a particular train-test split. 

4. Best Model Selection: After completing the search, GridSearchCV returns the best 
combination of hyperparameters based on the scoring metric. 

5. Refitting: The model can be refit on the entire training set using the best 
hyperparameters, providing a final model ready for deployment. 
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Example code snippet for Decision Tree Regressor 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.model_selection import GridSearchCV 

from sklearn.datasets import load_boston 

from sklearn.model_selection import train_test_split 

 

# Load the dataset (use your own dataset here) 

data = load_boston() 

X, y = data.data, data.target 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Define the model 

dt = DecisionTreeRegressor() 

 

# Define the parameter grid 

param_grid = { 

    'max_depth': [None, 10, 20, 30], 

    'min_samples_split': [2, 5, 10], 

    'min_samples_leaf': [1, 2, 4], 

    'max_features': [None, 'sqrt', 'log2'] 

} 

 

# Initialize GridSearchCV 

grid_search = GridSearchCV(estimator=dt, param_grid=param_grid, cv=5, 
scoring='neg_mean_squared_error', n_jobs=-1) 
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# Fit the model 

grid_search.fit(X_train, y_train) 

 

# Get the best parameters 

print("Best hyperparameters:", grid_search.best_params_) 

 

# Evaluate the best model on the test set 

best_model = grid_search.best_estimator_ 

test_score = best_model.score(X_test, y_test) 

print("Test set score:", test_score) 
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• Development of battery for new applications like solar, communication & special 
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& 3W (e-mobility)- different designs. 

D. As Head- North for Artheon Electronics/ Artheon Battery Co, from Nov 2014 to Dec 
2019. 
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• Corporate Organization – authority and delegated responsibilities to team. 
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• Operations –identify opportunities and propose new methods of improving existing 
operations. 

• Decisions –to meet the challenges presented by new trends and developments in 
the market. 
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