Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Genetic Engineering and OMICS Program: INT-BMSC Microbiology Course Code: HSMB3027 Semester: Vth Duration: 3 hours Max. Marks : 100

Instructions: Read and attempt all questions carefully.

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q1.	A mutation changes a codon from UUU (Phe) to UUC (Phe).	1.5	CO1
	What type of mutation is this?		
	A. Missense mutation		
	B. Silent mutation		
	C. Nonsense mutation		
	D. Frameshift mutation	4.5	604
Q2.	You need to analyze protein-DNA interactions. Identify the molecular technique would you use?	1.5	CO4
	A. Electrophoretic mobility shift assay (EMSA)		
	B. Northern blotting		
	C. CRISPR-Cas9 gene editing		
	D. DNA sequencing		
Q3.	Non-viral gene delivery vehicles like liposomes considered	1.5	CO3
	advantageous over viral vectors because -		
	A. They are more efficient in delivering genes to cells.		
	B. They have lower immunogenicity and are easier to		
	produce.		
	C. They integrate stably into the host genome.		
	D. They deliver larger DNA fragments with higher		
	precision.		
Q4.	In nanopore sequencing, Illustrate the mechanism of DNA	1.5	CO1
	sequencing.		
	A. By the change in ion current as DNA passes through a		
	nanopore		
	B. By fluorescence emission during nucleotide		
	incorporation		
	C. By detecting mass differences between nucleotides		
	D. By enzymatic cleavage of labeled nucleotides		

Q5.	A new vegeting for a readington winter is being tested. Identify	1.5	CO3
ບຸວ.	A new vaccine for a respiratory virus is being tested. Identify	1.5	003
	the factors would you consider for evaluating its effectiveness?		
	A. The speed of antibody production, longevity of		
	immunity, and reduction in disease transmission		
	B. The ease of administration and its cost-effectiveness		
	C. The type of pathogen used in the vaccine		
	D. The number of doses required for complete		
	immunization		
Q6.	Identify the major limitation of live attenuated vaccines in	1.5	CO3
	immunocompromised individuals.		
	A. They do not provide long-term immunity.		
	 B. They can potentially revert to a virulent form and cause disease. 		
	C. They require frequent booster doses.		
	D. They are not effective in young children.		
Q7.	Identify the example of a live attenuated vaccine.	1.5	CO3
	A. Polio vaccine (Salk)		
	B. Measles, Mumps, Rubella (MMR) vaccine		
	C. Hepatitis B vaccine		
	D. Tetanus toxoid		
Q8.	first human therapeutic protein expressed in	1.5	CO1
00	plants.	4 5	004
Q9.	Insulin's active form is stored in pancreatic beta cells in the form of -	1.5	CO1
	A. Monomeric insulin		
	B. Hexameric insulin with zinc ions		
	C. Dimeric insulin		
	D. Proinsulin		
Q10.	Point out the primary cellular target of insulin's action in	1.5	C01
	lowering blood glucose levels.		
	A. Nuclear receptors to activate gene transcription		
	B. Glucose transporters to facilitate glucose uptake		
	C. Mitochondria to increase ATP production		
044	D. Ribosomes to enhance protein synthesis	1.5	C01
	Identify the primary receptor involved in the initiation of Insulin	1.5	001
Q11.	signaling		
Q11.	signaling. A Tyrosine kinase receptor		
Q11.	A. Tyrosine kinase receptor		
Q11.	A. Tyrosine kinase receptorB. G-protein coupled receptor		
Q11.	 A. Tyrosine kinase receptor B. G-protein coupled receptor C. Nuclear hormone receptor 		
Q11. Q12.	A. Tyrosine kinase receptorB. G-protein coupled receptor	1.5	C01
	 A. Tyrosine kinase receptor B. G-protein coupled receptor C. Nuclear hormone receptor D. Ion channel receptor 	1.5	C01
	 A. Tyrosine kinase receptor B. G-protein coupled receptor C. Nuclear hormone receptor D. Ion channel receptor Select the genetic disorders can potentially be treated with 	1.5	CO1
	 A. Tyrosine kinase receptor B. G-protein coupled receptor C. Nuclear hormone receptor D. lon channel receptor Select the genetic disorders can potentially be treated with CRISPR-Cas9. 	1.5	CO1

	D. All of the above		
Q13.	Point out the role of viral vectors in gene therapy.	1.5	CO1
	A. They amplify DNA sequences for therapeutic use		
	B. They serve as carriers to deliver therapeutic genes into		
	cells		
	C. They silence disease-causing genes directly		
	D. They synthesize proteins required for treatment		
Q14.	Recognize the critical ethical concern related to genetic code	1.5	CO2
	expansion.		
	A. The environmental impact of ncAAs.		
	B. The potential transfer of orthogonal systems to native		
	organisms.		
	C. The inability to synthesize orthogonal ribosomes.		
	D. The inability to replicate ncAA-incorporated proteins in		
	natural systems.		
Q15.	Select the potential drawback of error-prone PCR?	1.5	CO2
Q1J.	A. It cannot amplify DNA efficiently.	1.5	002
	B. It generates a large number of off-target mutations.		
	C. It requires expensive, high-fidelity DNA polymerases.		
	D. It is limited to short DNA sequences.		
Q16.	A scientist argues that PACE is more efficient than traditional	1.5	CO4
	directed evolution methods. Identify the statement supporting		
	his claim?		
	A. PACE automates the generation and screening of		
	mutants.		
	B. PACE eliminates the need for host cells during		
	evolution.		
	C. PACE introduces no genetic mutations.		
	D. PACE does not rely on phage replication.		
Q17.	Suggest a method to study riboswitch dynamics in living cells.	1.5	CO3
	A. Use fluorescence-based reporter assays to monitor		
	riboswitch activity.		
	B. Perform mass spectrometry to detect riboswitch-bound		
	metabolites.		
	C. Isolate riboswitch RNA and sequence it.		
Q18.	D. Conduct cryo-electron microscopy of the ribosome. You observe that a certain IncRNA interacts with chromatin-	1.5	CO2
Q10.		1.5	
	remodeling complexes. Suggest the conclusion you draw about its role.		
	A. It is likely involved in translational regulation.		
	B. It likely modulates chromatin structure to influence gene		
	expression.		
	C. It degrades other RNAs to prevent their translation.		
	D. It directly binds to DNA polymerase.		

Q19.	Characterize the desolvation process responsible for ion	1.5	CO3
	generation in ESI-MS?	_	
	A. Desolvation reduces the charge on the ions, stabilizing		
	them.		
	B. Desolvation removes neutral solvent molecules, leaving		
	charged ions.		
	 C. Desolvation increases the fragmentation of ions. D. Desolvation causes aggregation of ions. 		
Q20.	Design a MALDI experiment to differentiate between two	1.5	CO4
420.	proteins of similar size but different post-translational	no	
	modifications. Identify the steps you prioritize.		
	A. Use a matrix that enhances ionization of hydrophilic		
	residues.		
	B. Increase laser power to detect minor differences in		
	mass.		
	C. Enrich the proteins using affinity purification followed by		
	MALDI analysis.		
	D. Combine a and c.		
	Section B		
	(4Qx5M=20 Marks)		
Q1.	Explain liposome-mediated gene delivery (transfection and	5	CO1
	endocytosis) with the help of a diagram.		
Q2.	Discuss gene therapy and explain various strategies for gene	5	CO4
	therapy.		
Q3.	Describe the process of developing a recombinant vaccine and	5	CO4
	give an example.		
Q4.	Explain the molecular synthesis and function of miRNA and	5	CO4
	evaluate its importance in gene regulation.		
	Section C (2Qx15M=30 Marks)		
Q1.	Define stable cell. Elaborate the method for making a stable	15	CO4
Q (1.	cell line and its application.	15	004
Q2.	Describe a proteome-based method for bacterial species	15	CO3
~	identification and explain its working principle.	10	000
	Section D		
	(2Qx10M=20 Marks)		
Q1.	Propose a method for comparative proteomics of drug-treated	10	CO
	cancer cell lines.		4
Q2.	Evaluate ESI-MS as a method and discuss its applications	10	CO
	across different fields of biology.		4
			1