Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Recombinant DNA Technology and OMICS Program: B.Sc. Microbiology Course Code: HSMB3001 Semester: Vth Duration: 3 hours Max. Marks : 100

Instructions: Read and attempt all questions carefully.

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q1.	Redundancy of the genetic code protect against mutations -	1.5	C01
	A. By allowing only one codon per amino acid.		
	B. By ensuring synonymous codons encode the same		
	amino acid.		
	C. By eliminating all stop codons.D. By preventing insertion or deletion mutations.		
Q2.	In Molecular biology, Southern blotting is used -	1.5	CO1
Q2.	A. To sequence DNA fragments	1.5	
	B. To detect specific DNA sequences in a mixture		
	C. To analyze protein expression		
	D. To amplify RNA molecules		
Q3.	Elucidate the fundamental principle of Sanger sequencing?	1.5	CO3
	A. Use of radioactive isotopes to tag DNA strands		
	B. Chain termination using dideoxynucleotides (ddNTPs)		
	C. DNA fragmentation and mass spectrometry		
	D. Detection of DNA via fluorescence markers only		
Q4.	Adjuvants in vaccines are used -	1.5	CO1
	A. To preserve the vaccine for a longer duration		
	B. To enhance the immune response to the antigen		
	C. To reduce the number of doses required		
	D. To prevent allergic reactions to vaccine components		
Q5.	Cloning a tyrosinase gene in <i>E. coli</i> led to the final production	1.5	CO1
	of		
	A. Melanin B. Albumin		
	C. Insulin		
	D. Indigo		
Q6.	Identify the malfunctioning pathway associated with insulin	1.5	CO3
	resistance.		

r r			,
	A. Impaired GLUT4 translocation due to defective insulin		
	receptor signaling		
	B. Overactivation of glycogen synthase in liver cells		
	C. Increased beta-cell secretion of insulin		
	D. Impaired breakdown of glycogen		
Q7.	Recognize Insulin's active form stored in pancreatic beta cells.	1.5	CO1
	A. Monomeric insulin		
	B. Hexameric insulin with zinc ions		
	C. Dimeric insulin		
	D. Proinsulin		
Q8.	Select the organism used for recombinant hepatitis B vaccine	1.5	CO1
	production.		
	A. Escherichia coli		
	B. Saccharomyces cerevisiae		
	C. Bacillus subtilis		
	D. Pseudomonas fluorescens		
Q9.	A researcher wants to incorporate an ncAA at a specific site in	1.5	CO4
	a protein. List the steps.		
	A. Mutate the target codon to a stop codon (e.g., UAG) and		
	use an orthogonal tRNA-aaRS pair specific to the ncAA.		
	B. Modify the ribosome to recognize all codons as ncAAs.		
	C. Randomly incorporate ncAAs during translation.		
	D. Use chemical synthesis to add the ncAA post-		
	translationally.		
Q10.	Identify the factors responsible for the increased mutation rate	1.5	CO1
	in error-prone PCR.		
	A. High magnesium ion concentration		
	B. Use of a high-fidelity DNA polymerase		
	C. Optimal buffer conditions for DNA polymerase		
	D. Lower temperature for denaturation		
Q11.	List the advantage of computational protein design in protein	1.5	CO2
	engineering.		
	A. It eliminates the need for experimental validation.		
	B. It predicts protein structures and functions with high		
	accuracy.		
	C. It reduces the complexity of protein folding.		
	D. It directly modifies protein sequences without DNA		
	manipulation.		
Q12.	Elucidate the primary role of the ligand in a riboswitch	1.5	CO3
	mechanism.		
	A. It acts as an enzyme.		
	A. It acts as an enzyme.B. It triggers a conformational change in the riboswitch		
	•		
	B. It triggers a conformational change in the riboswitch		

Q13.	Point out the statement that best explains the role riboswitches	1.5	CO1
	affect translation initiation?		
	A. They degrade the mRNA.		
	B. They mask or unmask the Shine-Dalgarno sequence.		
	C. They alter ribosomal structure.		
	D. They prevent RNA polymerase binding.		
Q14.	Explain the role of the spray needle in ESI-MS.	1.5	CO4
	A. To fragment the sample into ions.		
	B. To create charged droplets through high-voltage		
	application.		
	C. To separate ions by their mass-to-charge ratio.		
	D. To collect the ions for analysis.		
Q15.	A sample contains peptides with different masses. After	1.5	CO2
	MALDI-TOF analysis, you observe peaks at 1000 Da and 2000		
	Da. Identify the peptide ion that would reach the detector first.		
	A. 1000 Da		
	B. 2000 Da		
	C. Both will arrive simultaneously		
	D. Cannot determine without more information		
Q16.	Identify the role of matrix responsible for influencing the	1.5	CO3
	ionization process in MALDI.		
	A. It only determines the wavelength of the laser.		
	B. It has no role in ionization; it only protects the sample.		
	C. It absorbs the laser energy and facilitates proton		
	transfer to the analyte.		
Q17.	D. It influences only the resolution of the spectrum. Di-sulphide bond is formed in –	1.5	C01
Q (1).	A. Prosulin		001
	B. Metasulin		
	C. Proinsulin		
	D. Preproinsulin		
Q18.	Select the critical ethical concern related to genetic code	1.5	CO3
	expansion.		
	A. The environmental impact of ncAAs.		
	B. The potential transfer of orthogonal systems to native		
	organisms.		
	C. The inability to synthesize orthogonal ribosomes.		
	The inability to replicate ncAA-incorporated proteins in natural		
	systems.		
Q19.	A scientist argues that PACE is more efficient than traditional	1.5	CO2
	directed evolution methods. Identify the statement in support of	-	
	this claim.		
	A. PACE automates the generation and screening of		
	mutants.		1

Q20.	A. Polio vaccine (Salk)	1.5	C01
	 B. Measles, Mumps, Rubella (MMR) vaccine C. Hepatitis B vaccine D. Tetanus toxoid 		
	Section B (4Qx5M=20 Marks)		
Q1.	List out the differences in the chemical and electroporation- based transformation of DNA.	5	CO1
Q2.	Elaborate the role of growth hormone in the body and draw a schematic for its production using rDNA technology.	5	CO4
Q3.	Discuss a technique to identify molecular markers in a genetic study.	5	CO3
Q4.	Explain Antisense technology and discuss its therapeutic applications.	5	CO3
	Section C (2Qx15M=30 Marks)		•
Q1.	Elaborate on Nextgen Sequencing. Discuss nanopore sequencing and its applications.	15	CO4
Q2.	Describe vaccines and discuss their role in immunity. Explain any three vaccine design strategies. Additionally, clarify the need the requirement for multiple doses or booster in some vaccinations.	15	CO4
	Section D (2Qx10M=20 Marks)		
Q1.	Describe the mechanism of action of insulin and explain a methodology for insulin production in <i>E. coli</i> using rDNA technology.	10	CO 3
Q2.	Define stable cells? Describe the process for generating a stable cell line.	10	CO 3