UPES

End Sem examination, December 2024

Course: Bioanalytical Techniques
Program: B.Tech. Biotechnology
Course Code: HSBT3004

Duration : 3 Hours Max. Marks: 100

: V

Semester

Instructions:

S. No.	Section A	Marks	Cos
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	The stationary phase in gel filtration chromatography	1.5	CO1
	consists of:		
	a) Porous beads		
	b) Solid glass particles		
	c) Charged ions		
	d) Magnetic particles		
Q 2	What is the purpose of using a rotor in a centrifuge?	1.5	CO1
	a) To control the temperature of the samples		
	b) To hold and stabilize sample tubes during rotation		
	c) To calculate sedimentation rates		
	d) To measure the density of the samples		
Q 3	In fluorescence spectroscopy, what is typically measured	1.5	CO1
	to quantify fluorescence?		
	a) Absorption spectrum		
	b) Emission intensity		
	c) Sample viscosity		
	d) Refractive index		
Q 4	In cation exchange chromatography, the stationary phase	1.5	CO1
	has which type of charge?		
	a) Positive charge		
	b) Negative charge		
	c) Neutral charge		
	d) Variable charge		
Q 5	In anion exchange chromatography, which molecules are	1.5	CO1
	retained on the column?		
	a) Neutral molecules		
	b) Positively charged molecules		
	c) Negatively charged molecules		
	d) Hydrophobic molecules		
Q 6	Recall the name of any cation exchanger.	1.5	CO1

Q 7	Define triplet state.	1.5	CO1
Q 8	What is the role of nitrilotriacetic acid (NTA) in Ni-NTA resin?	1.5	CO1
	a) To neutralize the charge on proteins		
	b) To stabilize the nickel ion by chelating it and allowing		
	binding to His-tagged proteins		
	c) To increase the pH of the buffer		
	d) To elute proteins from the resin		
Q 9	The shift of an absorption maximum to a longer	1.5	CO1
	wavelength is called hypsochromic or red shift		
	(True/False)		
Q 10	Beer's law states that absorbance is directly proportional	1.5	CO1
	to the thickness of the absorbing material (True/False).		
Q 11	The Svedberg unit (S) is used to measure:	1.5	CO2
	a) Centrifugal speed		
	b) Sedimentation rate		
	c) Density of a solution		
	d) Centrifuge rotor radius		
Q 12	The void volume (V ₀) in gel filtration chromatography	1.5	CO2
	refers to:		
	a) The volume of solvent outside the pores of the beads		
	b) The total volume of the column		
	c) The volume occupied by the gel beads		
	d) The volume of solvent inside the pores of the beads		
Q 13	Identify the type of chromatography and label A, B, and	1.5	CO2
	C :		
	A C		
Q 14	Why is imidazole used to elute proteins from a Ni-NTA	1.5	CO2
	column?		
	a) It binds to the nickel ion, competing with the histidine		
	residues of the protein		
	b) It denatures the protein, releasing it from the column		
	c) It increases the temperature, which releases the protein		
	d) It decreases the flow rate, aiding in protein recovery		
Q 15	Which of the following amino acid residue is modified	1.5	CO2
	during ICAT analysis?		
	a) Tyrosine b) Glycine c) Serine d) Cysteine		
Q 16	One of the drawbacks of ICAT technique is:	1.5	CO2
	-		1

	a) Bias for cysteine rich proteins		
	b) Can not be used for complex mixture		
	c) Extremely cumbersome due to many manual steps		
	d) Requirement of multi purification steps		
Q 17	Recall the full form of MALDI.	1.5	CO3
Q 18	Define the term fragment ion.	1.5	CO3
Q 19	In Differential Scanning Calorimetry (DSC), which of the	1.5	CO3
	following is typically recorded as a function of		
	temperature?		
	a) Pressure changes		
	b) Volume changes		
	c) Heat flow		
	d) Light absorption		
Q 20	What is the primary principle behind fluorescence	1.5	CO3
	spectroscopy?		
	a) Absorption of light and heat emission		
	b) Absorption of light and emission of light at a longer		
	wavelength		
	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B		
	c) Light scattering by molecules d) Change in molecular mass upon excitation		
	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks)	5	СО
Q Q1	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography.	5	CO1
Q1	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and		
	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC)	5	CO1
Q1	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and	5	CO1
Q1 Q2	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC)	5	CO1
Q1 Q2 Q3	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC) Discuss about electron impact ionization (ESI).	5 5 5	CO1 CO1
Q1 Q2 Q3	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC) Discuss about electron impact ionization (ESI). Differentiate between fluorescence and phosphorescence.	5 5 5	CO1 CO1 CO2 CO3
Q1 Q2 Q3	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC) Discuss about electron impact ionization (ESI). Differentiate between fluorescence and phosphorescence. Section C	5 5 5	CO1 CO1
Q1 Q2 Q3 Q4	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC) Discuss about electron impact ionization (ESI). Differentiate between fluorescence and phosphorescence. Section C (2Qx15M=30 Marks) (a) What are "tags" in affinity chromatography. (2) How	5 5 5	CO1 CO1 CO2 CO3
Q1 Q2 Q3 Q4	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC) Discuss about electron impact ionization (ESI). Differentiate between fluorescence and phosphorescence. Section C (2Qx15M=30 Marks) (a) What are "tags" in affinity chromatography. (2) How are they used to purify recombinant proteins? Explain	5 5 5 5	CO1 CO2 CO3
Q1 Q2 Q3 Q4	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC) Discuss about electron impact ionization (ESI). Differentiate between fluorescence and phosphorescence. Section C (2Qx15M=30 Marks) (a) What are "tags" in affinity chromatography. (2) How are they used to purify recombinant proteins? Explain with example of His-Tag. (c) Describe principle of	5 5 5 5	CO1 CO2 CO3
Q1 Q2 Q3 Q4 Q1	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC) Discuss about electron impact ionization (ESI). Differentiate between fluorescence and phosphorescence. Section C (2Qx15M=30 Marks) (a) What are "tags" in affinity chromatography. (2) How are they used to purify recombinant proteins? Explain with example of His-Tag. (c) Describe principle of Differential Scanning Calorimetry (with diagram).	5 5 5 5 2+5+7	CO1 CO2 CO3 CO CO3
Q1 Q2 Q3 Q4	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC) Discuss about electron impact ionization (ESI). Differentiate between fluorescence and phosphorescence. Section C (2Qx15M=30 Marks) (a) What are "tags" in affinity chromatography. (2) How are they used to purify recombinant proteins? Explain with example of His-Tag. (c) Describe principle of Differential Scanning Calorimetry (with diagram). (a) Define enthalpy and entropy of a reaction. (b) Explain	5 5 5 5	CO1 CO2 CO3
Q1 Q2 Q3 Q4 Q1	C) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC) Discuss about electron impact ionization (ESI). Differentiate between fluorescence and phosphorescence. Section C (2Qx15M=30 Marks) (a) What are "tags" in affinity chromatography. (2) How are they used to purify recombinant proteins? Explain with example of His-Tag. (c) Describe principle of Differential Scanning Calorimetry (with diagram). (a) Define enthalpy and entropy of a reaction. (b) Explain the principle of SPR (with diagram). (c) What is SPR	5 5 5 5 2+5+7	CO1 CO2 CO3 CO CO3
Q1 Q2 Q3 Q4 Q1	c) Light scattering by molecules d) Change in molecular mass upon excitation Section B (4Qx5M=20 Marks) Describe the principle of gel filtration chromatography. Differentiate between internal conversion (IC) and intersystem crossing (ISC) Discuss about electron impact ionization (ESI). Differentiate between fluorescence and phosphorescence. Section C (2Qx15M=30 Marks) (a) What are "tags" in affinity chromatography. (2) How are they used to purify recombinant proteins? Explain with example of His-Tag. (c) Describe principle of Differential Scanning Calorimetry (with diagram). (a) Define enthalpy and entropy of a reaction. (b) Explain	5 5 5 5 2+5+7	CO1 CO2 CO3 CO CO3

Q			
Q1	(a) Describe the principle of isothermal calorimetry (with	7+3	CO2
	diagram) and (b) its various applications.		
Q2	(a) Describe fluorescence energy transfer (FRET).	5+5	CO4
	(b) Discuss how FRET can be used for protein-protein or		
	protein-RNA interactions.		
	Or		
	(a) Describe the principle of mass spectroscopy (with		
	diagram). (b) Discuss the Electron spray ionization (ESI) in		
	detail for protein identification.		