Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Structural Biology Program: B.Tech. Biotechnology Course Code: HSBT3006 Semester: Vth Duration: 3 hours Max. Marks : 100

Instructions: Carefully read and attempt all the questions.

Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks) S Q1. Template based protein modeling techniques is called as A. X-ray crystallography B. NMR C. Cryo-EM D. Homology modeling 1.5 CO1 Q2. Primary sequence of the protein can be determined by? A. Tandem MS/MS B. Nextgen sequencing C. Sanger Sequencing D. All the above 1.5 CO2 Q3. Identify the server used for determining the molecular weight of protein. A. ProtPapram B. Protscale C. Peptide cutter D. Protein weight 1.5 CO1 Q4. Identify the servers used for predicting the secondary structure of the protein. A. J-Pred B. Sci-Pred C. Protein-Pred D. I-Pred 1.5 CO1 Q5. In MD simulations, equilibration refers to: A. The process of setting up the initial coordinates of molecules B. The period during which the system is allowed to reach a stready. 1.5 CO2
Q1. Template based protein modeling techniques is called as 1.5 C01 A. X-ray crystallography B. NMR 1.5 C01 Q2. Primary sequence of the protein can be determined by? 1.5 C02 A. Tandem MS/MS B. Nextgen sequencing C02 Q3. Identify the server used for determining the molecular weight of protein. 1.5 C01 A. ProtPapram B. Protecale 1.5 C01 Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 C01 A. J-Pred B. Sci-Pred C01 Q5. In MD simulations, equilibration refers to: A. The process of setting up the initial coordinates of molecules B. To 20
Q1. Template based protein modeling techniques is called as 1.5 C01 A. X-ray crystallography B. NMR 1.5 C01 Q2. Primary sequence of the protein can be determined by? 1.5 C02 A. Tandem MS/MS B. Nextgen sequencing 1.5 C02 Q3. Identify the server used for determining the molecular weight of protein. 1.5 C01 A. ProtPapram B. Protscale 1.5 C01 Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 C01 Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 C01 Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 C01 Q5. In MD simulations, equilibration refers to: 1.5 C02 Q5. In MD simulations, equilibration refers to: 1.5 C02 Q5. The process of setting up the initial coordinates of molecules B. The period during which the system is allowed to reach a steady
A. X-ray crystallography B. NMR Image: Construction of the protein can be determined by? 1.5 Q2. Primary sequence of the protein can be determined by? 1.5 CO2 A. Tandem MS/MS B. Nextgen sequencing 1.5 CO2 Q3. Identify the server used for determining the molecular weight of protein. 1.5 CO1 A. ProtPapram B. Protscale 1.5 CO1 C. Peptide cutter D. Protein weight 1.5 CO1 Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 CO1 A. J-Pred B. Sci-Pred 1.5 CO1 Q5. In MD simulations, equilibration refers to: 1.5 CO2 A. The process of setting up the initial coordinates of molecules B. The period during which the system is allowed to reach a steady
C. Cryo-EM D. Homology modeling Q2. Primary sequence of the protein can be determined by? 1.5 CO2 A. Tandem MS/MS B. Nextgen sequencing 1.5 CO2 Q3. Identify the server used for determining the molecular weight of protein. 1.5 CO1 A. ProtPapram B. Protscale 1.5 CO1 Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 CO1 Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 CO1 Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 CO1 Q5. In MD simulations, equilibration refers to: 1.5 CO2 Q5. The process of setting up the initial coordinates of molecules B. The period during which the system is allowed to reach a steady
Q2. Primary sequence of the protein can be determined by? 1.5 CO2 A. Tandem MS/MS B. Nextgen sequencing 1.5 CO2 Q3. Identify the server used for determining the molecular weight of protein. 1.5 CO1 A. ProtPapram B. Protscale 1.5 CO1 C. Peptide cutter D. Protein weight 1.5 CO1 Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 CO1 A. J-Pred B. Sci-Pred 1.5 CO1 Q5. In MD simulations, equilibration refers to: 1.5 CO2 A. The process of setting up the initial coordinates of molecules 1.5 CO2
A. Tandem MS/MS B. Nextgen sequencing C. Sanger Sequencing D. All the above Q3. Identify the server used for determining the molecular weight of protein. A. ProtPapram B. Protscale C. Peptide cutter D. Protein weight Q4. Identify the servers used for predicting the secondary structure of the protein. A. J-Pred B. Sci-Pred C. Protein-Pred D. I-Pred Q5. In MD simulations, equilibration refers to: A. The process of setting up the initial coordinates of molecules B. The period during which the system is allowed to reach a steady
C. Sanger Sequencing D. All the above Q3. Identify the server used for determining the molecular weight of protein. A. ProtPapram B. Protscale C. Peptide cutter D. Protein weight Q4. Identify the servers used for predicting the secondary structure of the protein. A. J-Pred B. Sci-Pred C. Protein-Pred D. I-Pred Q5. In MD simulations, equilibration refers to: A. The process of setting up the initial coordinates of molecules B. The period during which the system is allowed to reach a steady
Q3. Identify the server used for determining the molecular weight of protein. 1.5 CO1 A. ProtPapram B. Protscale 1.5 CO1 Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 CO1 A. J-Pred B. Sci-Pred 1.5 CO1 Q5. In MD simulations, equilibration refers to: 1.5 CO2 A. The process of setting up the initial coordinates of molecules 1.5 CO2
A. ProtPapram B. Protscale C. Peptide cutter D. Protein weight Q4. Identify the servers used for predicting the secondary structure of the protein. A. J-Pred B. Sci-Pred C. Protein-Pred D. I-Pred Q5. In MD simulations, equilibration refers to: A. The process of setting up the initial coordinates of molecules B. The period during which the system is allowed to reach a steady
C. Peptide cutter D. Protein weight Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 CO1 A. J-Pred B. Sci-Pred 1.5 CO1 Q5. In MD simulations, equilibration refers to: 1.5 CO2 A. The process of setting up the initial coordinates of molecules 1.5 CO2 B. The period during which the system is allowed to reach a steady 1.5 CO2
Q4. Identify the servers used for predicting the secondary structure of the protein. 1.5 CO1 A. J-Pred B. Sci-Pred 1.5 CO1 Q5. In MD simulations, equilibration refers to: 1.5 CO2 A. The process of setting up the initial coordinates of molecules 1.5 CO2 B. The period during which the system is allowed to reach a steady 1.5 CO2
protein. A. J-Pred B. Sci-Pred C. Protein-Pred D. I-Pred Q5. In MD simulations, equilibration refers to: 1.5 A. The process of setting up the initial coordinates of molecules The period during which the system is allowed to reach a steady
A. J-Pred B. Sci-Pred C. Protein-Pred D. I-Pred Q5. In MD simulations, equilibration refers to: 1.5 A. The process of setting up the initial coordinates of molecules B. The period during which the system is allowed to reach a steady
Q5. In MD simulations, equilibration refers to: 1.5 CO2 A. The process of setting up the initial coordinates of molecules B. The period during which the system is allowed to reach a steady
A. The process of setting up the initial coordinates of molecules B. The period during which the system is allowed to reach a steady
B. The period during which the system is allowed to reach a steady
state
C. The production phase of the simulation
D. The calculation of the potential energy
Q6. Identify the key limitation of MD simulations. 1.5 CO1
A. They cannot simulate molecular motions
B. They are only applicable to gaseous systems
C. They are limited by computational resources and timescales
D. They do not require force fields
Q7.Fibrous proteins are soluble in water.True or False1.5CO1
Q8.Identify the web tool used for the analyses of Protein-ligand interactions.1.5CO1
A. CLIP B. ProtParam
C. PLIP D. ProtScale
Q9. Identify the correct statements regarding Bragg's Law. 1.5 CO1
A. It is only valid for amorphous solids.
B. It can be used to determine the structure of crystalline solids.

D. It is derived from the principles of quantum mechanics.		
Q10. The characteristic X-rays used in XRD are typically generated by:	1.5	CO1
A. Bremsstrahlung radiation		
B. Radioactive decay		
C. Electron transitions in heavy atoms (e.g., Cu or Mo targets)		
D. Gamma-ray sources		
Q11. PyMOL is written in which programming language?	1.5	CO1
A. Python		
B. Java		
D. MATLAB	15	CO3
A Secondary Structures	1.5	005
B Gibbs Free energy		
C. Enthalpy		
D. All of the above		
Q13. Phylogenetic trees generated from MSA data are useful because they:	1.5	CO2
A. Show the exact mutation rates for each residue		
B. Illustrate evolutionary relationships among sequences		
C. Improve alignment accuracy		
D. Increase computational speed		
Q14. Using longer wavelength light for diffraction results in –	1.5	CO3
A. Increased Resolution B. No-change in Resolution		
C. Sharper Image D. Decreased Resolution	4 5	001
Q15 is a protein structure database.	1.5	COT
A. PDB B. Publielli		
Q16 Proteins with different structures but same function may result from	1.5	CO4
A. Codominant evolution B. Dominant evolution		
C. Divergent evolution D. Convergent evolution		
Q17. Identify the role of the magnetic field in NMR.	1.5	CO1
A. To align the nuclei in specific energy states		
B. To excite the nuclei to higher energy levels		
C. To increase the temperature of the sample		
D. To create a diffraction pattern		
Q18. Identify the main challenge in Cryo-EM sample preparation.	1.5	CO1
A. Maintaining vacuum during imaging		
B. Preventing sample crystallization during freezing		
C. Increasing the conductivity of the sample		
D. Adding heavy filetal stains for contrast		
Q19. Electrons diffract more than the protons. True or False	1.5	CO2
Q20. CD is often combined with thermal denaturation studies to:	1.5	CO2
A. Measure protein melting temperature (T_m)		
B Study protein aggregation kinetics		
b. Study protein aggregation kinetics		
C. Determine protein solubility		

Section B					
(4Qx5M=20 Marks)					
		-	001		
Q1.	Classify the proteins based on their functions.	5	CO4		
Q2.	List the role of protein-protein interactions in the cell.	5	CO1		
Q3.	Discuss the help of a flowchart, explain the basics of Molecular Dynamics	5	CO3		
	(MD) simulations				
Q4.	Discuss the method used for representing the orientation of atomic planes	5	CO2		
	in a crystal? Write the steps involved to represent the orientation of atomic				
	planes.				
Section C					
(2Qx15M=30 Marks)					
Q1.	Describe force fields used for MD simulation. (7)	15	CO3		
	List the parameters included in its formulation. (6)				
	Give two popular examples. (2)				
Q2.	Discuss and draw the workflow for determining a three-dimensional	15	CO4		
	structure using Cryo-EM.				
Section D					
(2Qx10M=20 Marks)					
Q1.	Describe the steps involved in determining the Miller indices of a crystal.	10	CO3		
	Draw the Miller indices for 210 and 101.				
Q2.	Discuss the components of PDB file format? List the components responsible for its visualization and labeling. Describe "HETATM" in PDB file.	10	CO4		