	-		
	•	m	Δ.
1.4	•		

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Antimicrobial Drug Resistance and Drug Development

Semester:3rd

Program: MSC-MICROBIOLOGY

Course Code: HSMB8016P

Duration: 3 Hours

Max. Marks: 100

Instructions: Attempt all questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	The development of antimicrobial resistance (AMR) is a natural process, but excessive use of antibiotics accelerates it. (True/False)	1.5	CO1
Q 2	Interferons are used in the treatment of bacterial infections. (True/False)	1.5	CO2
Q 3	Vancomycin resistance is primarily caused by changes in bacterial ribosomal subunits. (True/False)	1.5	CO2
Q 4	Antiretroviral drugs can completely eliminate HIV from the body. (True/False)	1.5	CO2
Q 5	Penicillin resistance can occur through the production of beta- lactamase, which destroys the antibiotic. (True/False)	1.5	CO2
Q 6	What are macrolides?	1.5	CO1
Q 7	What is the significance of antibiotic resistance in the environment?	1.5	CO1
Q 8	What are interferons?	1.5	CO3
Q 9	What are Echinocandins?	1.5	CO3
Q 10	Which of the following antimicrobial drugs works by disrupting the fungal cell membrane? a) Amphotericin B b) Echinocandins c) Metronidazole d) Tinidazole	1.5	CO3
Q 11	Which class of drugs inhibits bacterial cell wall synthesis by binding to the fungal enzyme beta-glucan synthase? a) Penicillins b) Echinocandins	1.5	CO4

	c) Tetracyclines		
	d) Quinolones		
Q 12	What is the primary mechanism of action of Metronidazole and	1.5	CO2
C	Tinidazole?		
	a) Inhibition of protein synthesis		
	b) Disruption of DNA synthesis		
	c) Disruption of the cell wall		
	d) Inhibition of folate synthesis		
Q 13	Which antiviral drug is used to inhibit RNA-dependent RNA	1.5	CO4
	polymerase and is effective against hepatitis C and respiratory		
	viruses?		
	a) Trifluridine		
	b) Ribavirin		
	c) Interferons		
	d) Zidovudine		
Q 14	Which of the following mechanisms of bacterial resistance is	1.5	CO2
	linked to the production of beta-lactamase enzymes?		
	a) Vancomycin resistance		
	b) Penicillin resistance		
	c) Macrolide resistance		
	d) Aminoglycoside resistance		
Q 15	The development of antibiotic resistance is accelerated by the	1.5	CO2
	overuse and misuse of antimicrobial drugs. (True/False)		
Q 16	Penicillin resistance in bacteria is mainly due to the alteration of	1.5	CO4
	ribosomal subunits. (True/False)		
Q 17	Macrolide antibiotics bind to bacterial ribosomes and prevent	1.5	CO3
	protein synthesis. (True/False)		
Q 18	Antiretroviral drugs are used to treat HIV by inhibiting its reverse	1.5	CO2
	transcriptase enzyme. (True/False)		
Q 19	The molecular basis for penicillin resistance often involves the	1.5	CO2
	production of beta-lactamase, which degrades the antibiotic.		
	(True/False)		
Q 20	The primary mechanism of action of Trifluridine is as a DNA	1.5	CO1
	polymerase inhibitor. (True/False)		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	What is the history of antimicrobial drug development? (2.5	5	CO2
	marks)		
	Provide examples of the first antimicrobial drugs and how they		
	revolutionized medicine. (2.5 marks)		
Q 2	Describe the mechanism of action of Amphotericin B. (2.5 marks)	5	CO3
<u> </u>	Describe the meenanism of action of Amphoteneni B. (2.3 marks)	<u></u>	003

	How does it affect fungal cells, and what are the potential side			
0.1	effects? (2.5 marks)		002	
Q 3	What are Echinocandins, and how do they inhibit fungal cell wall synthesis?	5	CO2	
Q 4	Compare and contrast the mechanisms of action of Metronidazole	5 CO2		
Ų 4	and Tinidazole. (2.5 marks)		CO2	
	How are these drugs effective against anaerobic infections? (2.5			
	marks)			
	Section C			
	(2Qx15M=30 Marks)			
Q 1	What are macrolides, and how do they function as ribosome-	15	CO2	
	binding antibiotics? (10 marks)			
	How has bacterial resistance to macrolides evolved? (5 marks)			
Q2	Provide an overview of the development and design of new	15	CO3	
	antimicrobial drugs. (5 marks)			
	Discuss the current strategies for combating antimicrobial			
	resistance, including computer-aided drug design, targeting enzymes, and receptors. (10 marks)			
	Section D			
	(2Qx10M=20 Marks)			
Q 1	Explain the mechanism of action of common antimicrobial	10	CO2	
	drugs such as Amphotericin B, Echinocandins,			
	Metronidazole, and Ribavirin. (5 marks)			
	Discuss their clinical uses, potential side effects, and			
	limitations. (5 marks)			
Q2	Discuss the molecular mechanisms of drug resistance,	10	CO3	
	including the resistance mechanisms for penicillin and			
	vancomycin. (5 marks)			
	How do these mechanisms lead to treatment failures in			
	bacterial infections? Include strategies to overcome these			
	resistances. (5 marks)			