Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2024

Course: Fluid Flow Program: BTech. Food Technology

Course Code: MECH 2061

Semester: III Time: 03 hrs. Max. Marks: 100

No. of pages: 6

Instructions: Answer all the questions. MCQ questions may have more than one correct answer. For all the questions in section A, marks will be given only if the answer is fully correct. SECTION A

	(20Q x 1.5M = 30Marks)			
S. No.		Marks	CO	
Q1	The unit of rate of shear strain is	1.5	CO1	
Q2	 Smoke coming out of a chimney is an example of a) Laminar flow b) Inviscid flow c) Unsteady flow d) Uniform flow 	1.5	CO1	
Q3	 For the flow over a sphere, the drag force depends on a) Flow velocity b) Viscosity of the fluid c) Gravitational force d) Material density of the sphere 	1.5	CO1	
Q4	 For a uniform flow a) Pressure remains the same at all locations b) Velocity remains the same at all the locations c) Velocity changes gradually with time d) Velocity remains constant with time 	1.5	CO1	
Q5	 Which of the following devices is not based on Bernoulli's principle? a) Orifice meter b) Rotameter c) Venturimeter d) Pitot tube 	1.5	CO1	
Q6	The unit of dynamic viscosity is a) Ns b) N/m ² c) Ns/m ² d) Stokes	1.5	CO1	

Q7	Bulk modulus is the ratio of a) shear stress to volumetric strain b) volumetric strain to shear stress c) compressive stress to volumetric strain d) volumetric strain to compressive stress	1.5	CO1
Q8	Define pump and turbine.	1.5	CO1
Q9	 For a Newtonian fluid (a) Shear stress is proportional to shear strain (b) Rate of shear stress is proportional to shear strain (c) Shear stress is proportional to rate of shear strain (d) Rate of shear stress is proportional to rate of shear strain 	1.5	CO1
Q10	 Which of the following apparatus are not used to measure flow rate a) Orifice meter b) Venturimeter c) Falling sphere apparatus d) Rotameter 	1.5	CO1
Q11	 For a viscous flow through a horizontal pipe of constant diameter a) Pressure decreases with the decrease in velocity b) Pressure increases with the increase in velocity c) Pressure decreases with the increase in velocity d) Pressure does not change with the change in velocity 	1.5	CO2
Q12	 Skin friction drag will be zero for a) Incompressible flow b) Ideal flow c) Non-Newtonian flow d) Laminar flow 	1.5	CO2
Q13	 The buoyancy force on a spherical ball depends on a) Diameter of the ball b) Viscosity of the fluid c) Density of the ball material d) Density of the liquid 	1.5	CO2
Q14	Bernoulli's equation deals with the law of conservation of a) mass b) flow rate c) energy d) rate of discharge	1.5	CO2

Q15	For the flow of water through a duct, the viscous force acting on the duct's wall		
	a) Decreases with an increase in flow velocityb) Remains constant with flow velocityc) Increases with the increase in diameter of the ductd) Increases with increase in rate of discharge	1.5	CO2
Q16	The mathematical expression for the Hydrostatic law is	1.5	CO2
Q17	An ideal fluid is a) inviscid b) incompressible c) both inviscid and incompressible d) none of the above	1.5	CO3
Q18	 Viscosity of a gas a) Increases with the increase in temperature b) Increases with the decrease in temperature c) Changes only with the change in Pressure d) Decreases with the decrease in temperature 	1.5	CO3
Q19	Blood is an example of fluids.	1.5	CO3
Q20	 Which is true for a Bingham plastic a) Shear stress is always zero b) Shear strain is always zero c) Behaves like liquid below a yield shear stress d) Behaves like a solid below a yield shear stress 	1.5	CO3
	SECTION B (4Qx5M= 20 Marks)		
Q1	Differentiate between a) Steady and unsteady flow b) uniform and non-uniform flow	5	C01
Q2	With the help of examples, describe the surfaces and body forces acting on a fluid element.	5	CO2
Q3	The velocity of a fluid is given by $\mathbf{V} = (3x^2-2y)\mathbf{i} + 2(3x+y)\mathbf{j}$. Calculate the magnitude of velocity and acceleration at a point (2,1,2) in the flow.	5	CO2

Q4	Calculate the buoyance force acting on a solid cube fully submerged in water. The edge length of the cube is 20mm. If the cube is made hollow, the buoyancy force acting on it will decrease or increase? Justify your answer.	5	CO2
	SECTION-C		
	(2Qx15M=30 Marks)		
Q1	 a) An oil is flowing through a pipe of diameter 10 cm. The flow velocity is 10 cm/s. Determine the nature of the flow (laminar or turbulent). Considering the oil as a viscous fluid, calculate the loss of pressure head between the two points in the flow at 2 meters apart. Given: specific gravity = 0.8 and viscosity coefficient = 0.5 poise. b) A 40 cm diameter pipe (pipe 1), conveying water, branches into two pipes (pipes 2 and 3) of diameter 30cm and 20cm, respectively. If the average velocity in pipe 1 is 3m/s, find the rate of discharge. Also, find the velocity in pipe 3 if the average velocity in pipe 2 is 2m/s. 	15	CO2
Q2	 Define the following and give a few examples of each. a) Newtonian fluids b) Ideal fluids c) Bingham plastics d) Shear thickening fluids e) Shear-thinning fluids Draw the of Rheological diagram (shear stress vs velocity gradient curves) for the above materials. 	15	CO3

	SECTION-D		
	(2Qx10M=20 Marks)		
Q1	 a) Two plates are placed at a distance of 0.2mm apart. An oil of viscosity 5 poise is filled between the two plates. The lower plate is fixed, while the upper plate is pulled at a constant velocity of 0.2 m/s. The surface area of the upper plate is 5 m². Calculate the force required to pull the upper plate with constant velocity. b) If a hydraulic press has a ram of 10 cm diameter and plunger of 2.5 cm diameter. What force would be required on the plunger to lift a mass of 500kg on the ram? 	10	CO2
	[5+5 marks]		
Q2	 a) What is viscosity and viscometer? [2 Marks] b) Write the Stoke's law. Calculate the drag force acting on a spherical ball falling in a tank filled with oil at a constant velocity of 1 m/s. The diameter of the ball is 20 mm, and the viscosity of the oil is 0.3 Ns/m². Also, calculate the value of the Drag coefficient. [8 Marks] 	10	CO3