Name:

Enrolment No:

UPES

End Semester Examination Dec - 2024 Program Name: BSc Microbiology Semester : III Course Name: Microbial Physiology and Metabolism Time : 3 hrs Course Code: HSMB2032 Max. Marks : 100 Nos. of page(s): 3 Instructions:

- 1) Answer all the questions after carefully going through the instructions.
- 2) Support answers with flow-charts and labelled diagrams wherever necessary.
- 3) Candidates are allowed to use scientific calculator.

S. No.	Section A	Marks	COs	
	Short answer questions/ MCQ/T&F			
	(20Q x 1.5M = 30 Marks)			
Q 1	Identify macromolecule(s) which are most abundant in cultures of <i>E coli</i> as	1.5	CO1	
	percentage of dry weight:			
	(a) Polysaccharide and lipopolysaccharides			
	(b) Proteins			
	(c) Lipids			
	(d) DNA and RNA			
Q2	Identify the trace metal that can limit growth of phototrophs in oceans and	1.5	CO1	
	aquatic systems:			
	(a) Mg			
	(b) Na			
	(c) K			
	(d) Fe			
Q3	The pentose phosphate pathway is an example of:	1.5	CO1	
	(a) Anabolic pathway			
	(b) Catabolic pathway			
	(c) Amphibolic pathway			
	(d) Oxidative phosphorylation			
Q4	Identify the strongest electron donor:	1.5	CO2	
	(a) FAD.H ₂			
	(b) O ₂			
	(c) CH ₄			
	(d) NADH + H^+			

Q5	State the difference between aerobic and anaerobic respiration.	1.5	CO1				
Q6	State the difference between catabolism and anabolism.	1.5	CO1				
Q6	Identify (a) electron donor and (b) electron acceptor in the following redox reaction:	1.5	CO3				
	$C_6H_{12}O_6 + 6O_2 = 6CO_2 + 6H_2O + Energy$						
Q7	State True or False:	1.5	CO3				
	Flow of electrons from O_2 to NADH+H ⁺ is spontaneous.						
Q8	Define autotrophs and heterotrophs.	1.5	CO1				
Q9	Mention the final electron acceptor to conserve energy during dissimilatory						
	reduction of Fe/Mn oxides.						
010	Identify growth factor(s) from below examples:	15	CO3				
X 10	(a) Folic acid	110	000				
	(b) F420 and F430						
	(c) Riboflavin						
	(d) All of the above						
Q11	MacConkey agar is an example of:	1.5	CO2				
	(a) Selective media						
	(b) Differential media						
	(c) Selective differential media						
	(d) Defined media						
Q12	Define Photoheterotrophic metabolism with an example.	1.5	CO2				
Q13	An enzyme which can reduce CO ₂ to glyceraldehyde 3-phosphate is	1.5	CO2				
	· · · · · · · · · · · · · · · · · · ·						
Q14	State the purpose of carboxysomes in oxygenic prokaryotes.	1.5	CO3				
Q15	NADPH is a coenzyme that donates hydride ions in substrate reducing reactions.	1.5	CO3				
	Identify hydride ion from below:						
	(a) H ⁻						
	(b) H ₂						
	(c) H ⁺						
	(d) H						
Q16	Define "great plate count anomaly."	1.5	CO1				
Q17	State the difference between oxygenic and anoxygenic phototrophs.	1.5	CO2				
Q18	State True or False:	1.5	CO3				
0.10	Reverse TCA cycle is an example of catabolic pathway.						
Q19	Define C and energy source for Chemolithoautotrophs with an example.	1.5	CO3				
Q20	Define Cardinal temperatures.	1.5	CO1				
Section B							
01	(4QX5IVI=20 IVIAFKS)	5	CO2				
	Explain the various microbial growth phases in a batch culture	5					
Q4	Explain the various incroolar growth phases in a batch culture.	3	005				

Q3	Discuss the oxygen requirements of mircorganisms in details with help of a labelled						5	CO2			
	diagram.										
Q4	Discuss the work	ing principle	of anaerobi	c culturing us	sing Gas-Pa	ak method with	5	CO4			
-	help of a labelled	help of a labelled diagram.									
	-	-		Section C							
	(2 Q x15 M =30 Marks)										
Q1	An experiment was performed to test the effect of temperatures on growth of bacterial							CO4			
	strain X. Optical d	lensity (OD)	of strain X	growing in b	atch cultur	es was recorded at					
	600 nm at various i	time intervals	s and tabula	ted as below.	Consider t	he grey highlighted					
	rows in below-tabl	e as exponen	tial phase o	f growth.				1			
		Time (Hours)	0	D @ 600 nm	1			1			
		· · · ·	37°C	55°C	65°C			1			
		0	0.2	0.2	0.2						
		6	0.18	0.22	0.22			1			
		12	0.18	0.25	0.28			I			
		24	0.2	0.34	0.4			1			
		36	0.25	0.45	0.55			I			
		48 60	0.28	0.82	0.75			1			
		72	0.25	0.82	0.88			I			
		96	0.1	0.92	0.98			l .			
	(a) Explain how temperature affects growth of microrganisms. (3 Marks)							1			
	(b) Mention temperature classes of microroganisms with examples. (3 marks)							1			
	(c) Calculate specific growth rates and generation times of strain X at different										
	temperatures and interpret the temperature requirements. (3 Marks)							1			
	(d) Discuss in detail molecular adapatations of microbial life in the cold and at high							l .			
	temperatures. (6 Marks)							1			
02	(a) Describe the distinct features of the ED pathway with a schematic. (10 Marks) 15										
•	(b) Compare the energetic yields of this pathway with glycolysis and comment on the							l .			
	archaeal variants of this pathway (5 Marks)										
		<u> </u>		Section D							
	(2Ox10M=20 Marks)										
Q1	Explain the concept of redox-tower and terminal electron acceptors with regards to						10	CO3			
-	degradation of organic matter in sediments.										
Q2	Describe in detail the different phases of pentose-phosphate pathway and explain their						10	CO4			
-	utility for cellular metabolism.										