

Enrolment No:

Name:

UPES

End Semester Examination, December 2024 Course: Physics for Health Sciences Semester : 1st Program: B. Tech Biomedical Engineering/Biotechnology/Food Technology Duration : 3 Hours Course Code: PHYS 1039 Max. Marks: 100

Instructions: Attempt all the questions. Use of non-programmable scientific calculator in permitted.

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks)		
Q2	Optical fibers work on the principle of total internal	1.5	CO1
	reflection. Is this statement true or false?		
Q3	Which of the following describes Snell's law of refraction?	1.5	CO1
	a. $n_1 \cos\theta_1 = n_2 \cos\theta_2$		
	b. $n_1 \sin \theta_1 = n_2 \sin \theta_2$		
	c. $n_1 \cos \theta_1 = n_2 \tan \theta_2$		
	d. $n_1 \sin^{-1} \theta_1 = n_2 \sin^{-1} \theta_2$		
Q4	In transverse waves, the particles vibrate parallel to the	1.5	C01
	direction of wave propagation. Is this statement true or false?		
Q5	Holography can employ coherent light sources. Is this	1.5	CO1
	statement true or false?		
Q6	State the law of radioactive decay.	1.5	CO2
07	Define the half life of a radioactive nucleus.	1.5	CO2
τ.			
08	Illustrate the symbolic representation of any element.	1.5	CO2

Q9	Electromagnetic force includes only magnetic effects. Is this	1.5	CO2			
	statement true or false?					
Q10	A step down transformer decreases the output voltage. Is this	1.5	CO2			
	statement true or false?					
Q11	Extrinsic semiconductors do not involve doping. Is this	1.5	CO3			
	statement true or false?					
Q12	Define a unit cell.	1.5	CO3			
Q13	Define the mass action law.	1.5	CO3			
Q14	Hard X-Rays have more penetrating power. Is this statement	1.5	CO3			
	true or false?					
Q15	The lattice angles of cubic lattice are orthogonal. Is this	1.5	CO3			
	statement true or false?					
Q16	Ψ^2 gives the probability density of finding a particle within a	1.5	CO4			
	defined space. Is this statement true or false?					
Q17	Which of the following describes dual nature of matter?	1.5	CO4			
	a. $\lambda = ph$					
	b. $\lambda = p/n$					
	d. None of the above					
Q18	Define the term Nanoscience.	1.5	CO4			
Q19	1D nanostructures are characterized by charge confinement	1.5	CO4			
	in two dimensions. Is this statement true or false?					
Q20	State the uncertainty principle.	1.5	CO4			
	Section B					
	(4Qx5M=20 Marks)					
0.1		25.25.5	<u>CO1</u>			
QI	a. Define acceptance angle of an optical fiber with the	2.5+2.5=5	COI			
	help of a diagram.					
	b. Calculate the numerical aperture of an optical fiber if					
	the acceptance angle is 11.5°.					
Q2	a. State Faraday's law of electromagnetic induction.	2.5+2.5=5	CO2			
	b. Calculate the induced emf produced due to a coil of					
	100 turns with the magnetic flux changing at rate of 5					
	Wb/s.					
Q3	Describe the various Bravais lattices.	5	CO3			

Q4	Show that an electron cannot exist inside the nucleus of an atom?	5	CO4			
Section C (20x15M=30 Marks)						
Q 1	Discuss the various radioactive decay processes with suitable examples.	15	CO2			
Q2	 a. Discuss how quantum theory can explain the phenomenon of atomic spectra. Take the example of hydrogen atom. b. What is the energy and frequency of radiation emitted due to de-excitation of an electron from n=2 to n=1 state in a hydrogen atom? Which spectral series does this emission correspond to? Calculate the same for a He atom. 	10+5=15	CO4			
Section D (20x10M=20 Marke)						
Q 1	 a. Find the Lorentz force of a charge -10C in an electric field of 20 N/C and magnetic field of 5 T moving with a velocity 10m/s. Assume the charge is travelling perpendicular to the magnetic field. b. If the electric field is switched off, what is the distance travelled by the charge within the field? Assume mass of the charge to be 10⁻²³ kg. 	5+5=10	CO2			
Q2	a. An electron is confined in a 1D potential well of length 0.5 nm. Calculate the ground state and next excited state energies of the electron. Also, draw the wavefunction profiles of electrons in these two states and comment on the probability of finding the electron over the entire length of the well.b. Discuss the importance of various quantum numbers.	5+5=10	CO4			