Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Discrete Mathematics

Program: B.Sc. (Hons.) Physics by Research Course Code: MATH4013 Semester: VII Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)				
S. N		Marks	СО	
Q 1	List all primes less than or equal to 50.	4	CO4	
Q 2	Consider the real numbers \mathbb{R} with the usual order \leq . Let $A = \{x: x \in \mathbb{Q} \text{ and } 5 < x^3 < 27\}$. i) Is A bounded above or below? ii) Does sup (A) or inf (A) exist?	4	CO2	
Q 3	Solve $6 x \equiv 15 \pmod{21}$.	4	CO4	
Q 4	Let gcd $(a, b) = 1$, show that gcd $(a + b, a - b) = 1$ or 2.	4	CO4	
Q 5	Define complemented Lattice with suitable example.	4	CO2	
SECTION B (4Qx10M= 40 Marks)				
Q 6	 Given, set A = {a, b, c}. Give an example of a relation <i>R</i> defined on the set A, which is: i) reflexive and transitive but not symmetric ii) symmetric and transitive but not reflexive iii) reflexive and symmetric but not transitive 	10	CO1	
Q 7	Find a number x such that $x \equiv 3 \pmod{11}, x \equiv 5 \pmod{19}$, and $x \equiv 10 \pmod{29}$.	10	CO4	
Q 8	Solve the recurrence relation of the Fibonacci sequence of numbers $f_n = f_{n-1} + f_{n-2}$, $n \ge 2$ with the initial condition $f_0 = 0$, $f_1 = 1$.	10	CO3	

Q 9	In a renowned software development company of 240 computer programmers, 102 employees are proficient in Java, 86 in C#, 126 in Python, 41 in C# and Java, 37 in Java and Python, 23 in C# and Python, and just 10 programmers are proficient in all three languages. How many computer programmers are there who are not proficient in any of these three languages? OR Find the minimum number of elements that one needs to take from the set $A = \{1, 2, 3,, 9\}$ to be sure that 2 of the numbers add up to 10.	10	CO3		
SECTION-C (2Qx20M=40 Marks)					
Q 10	 a) Let A = {1, 2, 3}, B = {a, b, c}, and C = {x, y, z}. Consider the following relations R and S from A to B and from B to C, respectively. R = {(1, b), (2, a), (2, c)} and S = {(a, y), (b, x), (c, y), (c, z)}. i) Find the composition relation <i>RoS</i>. ii) Find the matrices M_R, M_S and M_{RoS} of the respective relations R, S, and RoS. iii) Check whether M_{RoS} = M_RM_S. b) Consider the function f: R→ R and g: R→ R defined by f(a) = 2a+1, g(b) = b/3. Verify that (gof)⁻¹ = f⁻¹og⁻¹. 	20	CO1		
Q 11	 a) Prove the following proposition (for n ≥ 0): P(n): 1 + 2 + 2² + 2³ + + 2ⁿ = 2ⁿ⁺¹ - 1. b) Find the generating function for the sequence 3, -3, 3, -3, OR Use generating function technique to solve the recurrence relation a_{n+2} - 2 a_{n+1} + a_n = 2ⁿ, a₀ = 2, a₁ = 1. 	20	CO3		