Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2024

Course: Particulate Technology **Program:** B. Tech (Chemical Engineering) **Course Code:** CHCE 2026 Semester: VII Time: 03 hrs. Max. Marks: 100

Instructions: Please submit the APPENDIX-1 along with the answer script.

SECTION A						
S. No.	Statement (s) of the question	Marks	CO			
Q 1	What is flow separation? Draw a schematic diagram of a flow separation.	4	CO1			
Q 2	What is closed circuit crushing? Draw the schematic diagram of a closed circuit crushing involving 2 crushers.	4	CO2			
Q 3	(a) Define mesh and pitch of screens.(b) What does TSS stands for, w.r.t. to particle screening?	3 1	CO3			
Q 4	What is shear-mixing mechanism?	4	CO4			
Q 5	Give four examples of fluid flow through beds of solids.	4	CO5			
SECTION B						
Q 6	Differentiate (using table) between free settling and hindered settling of particles in a fluid.	10	CO1			
Q 7	Derive the critical rotation speed (N_c) for a ball mill and calculate the critical speed in revolution/minute , of a ball mill with an internal diameter of 1200 mm loaded with balls of 70 mm diameter.	10				
	OR Describe the working of any (and) comminution equipment for anyshing a feed of		CO2			
	intermediate size materials, along with a proper-labelled diagram .	10				
Q 8	The screen analysis representing size distribution of particles is shown in Fig. 1 . Using Gates-Gaudin-Schumann method, compute the particle size distribution of the particles (for three sizes) present in the pan.	10	CO3			
Q 9	What is agglomeration? Explain the different stages of agglomeration of particulate matter with a schematic diagram.	10	<u> </u>			
	What are nanoparticles? Give five applications of nanoparticle <i>w.r.t.</i> its properties (mentioning the properties is compulsory).	10	04			
	SECTION C					
Q 10	(i) Derive the expression of terminal settling velocity (V_t) of a particle falling in a	10				
	fluid with very low Reynolds number.		CO1			

	(ii) How does the size of a container (or vessel) affect the terminal settling velocity (V_t) of a particle? Give the expression for terminal settling velocity when the ratio of the size of particle to that of the size of container is significant.	10	
	OR		
	A cyclone separator is used to remove sand grains from an airstream at 150 °C. If the cyclone body is 0.6 m in diameter and the average tangential velocity is 16 m/s, what is the radial near the walls for a particle of 20 μ m in size? How much are these values greater than the terminal velocity in gravity settling? Given data: You can make use of Fig. 2 and 3 . While, specific gravity of particles = 2.2.	20	
Q 11	Derive Ergun equation for flow of liquid through packed bed. Mention all the assumptions wherever necessary.	20	CO5

APPENDIX-1

This sheet (containing Fig. 1 - 3) needs to be submitted along with the answer script.					
Roll number:	Name:				
Signature of the invigilator:					

Fig. 3: Viscosity of gases.