Name: Enrolment No:		UNIVERSITY OF TOMORROW				
UPES End Semester Examination, December 2024 Programme Name: Integrated BSc-MSc (Physics) Semester: VII Course Name: Nanofabrication and Characterization of Magnetic Nanostructures Time: 03 hrs Course Code: PHYS4007P Nos. of page(s):2 Instructions: Use of a scientific calculator is allowed						
SECTION A						
S. No.	(5Qx4	INI=20Marks)	Morks	CO		
Q 1	In a FCC unit cell of Ag Nanoparticles; the lattice parameter is 4.2 A. Evaluate the surface energy of $\{100\}$ surface if is bond strength or bond dissociation energy (ϵ) = 160 kJ/mole.		4	CO3		
Q2	Describe the concept of magnetic domain walls and their significance in nanomagnetism.		4	CO2		
Q3	How does the Giant Magnetoresistance (GMR) effect revolutionize data storage technology? Explain with examples.		4	CO1		
Q4	Compare and contrast the magnetic behavior of small particles with that of bulk materials.		4	CO1		
Q5	For a nano magnetic material, if χ is measured as 0.05 at 300 K, and E _a is 0.3 eV, calculate the pre-exponential factor (v).		4	CO3		
SECTION B						
(4Qx10M= 40 Marks)						
Q6	What are the 0D nanostructures? Deriv 0D nanostructures and estimate the Eiger Or What are the 1D nanostructures? Deriv 1D nanostructure and estimate the Eigen	The the Schrödinger equation for n function and Eigen values. The the Schrödinger equation for function and Eigen values.	10	CO3		
Q7	Discuss the Langevin's theory of Diam the magnetic susceptibility of diamagnet	nagnetic materials and estimate ic compounds.	10	CO3		
Q8	Apply the photolithography process magnetic materials. What should be the resist materials for improved pattering ir	to develop advanced nano- e properties of coat, mask, and a lithography?	10	CO4		
Q9	Comprehend the basic concepts, wi mathematical expression, of (i) Electron ray lithography.	th appropriate diagrams and n beam lithography and (ii) X-	10	CO4		

SECTION-C (2Qx20M=40 Marks)				
Q10	 Why induction method is suitable for measuring the magnetic moment? Propose a combined experimental and theoretical approach, for vibrating sample magnetometer (VSM) technique, to investigate the; (i) change in magnetic flux, (ii) voltage induced in the coils, (iv) magnetic field of a dipole, and (iv) magnetic moment from a typical Nanomagnetic sample. Or How the magneto-optic methods help to evaluate magnetic properties from the Nano-magnetic compounds? Describe the principle and working of MOKE for characterizing the magnetic properties. 	20	CO3	
Q11	Discuss the X-ray absorption spectroscopy technique and its sections for electronic structure analysis of nano-magnetic materials. Demonstrate the observation of spin moment and orbital moments detections through XMCD technique.	20	CO4	