Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Introduction to Computational Physics Program: Integrated (B.Sc) - (M.Sc) Physics Course Code: PHYS4003

Instructions:

- 1. All questions are compulsory.
- 2. Question 7 in section B has an internal choice.
- 3. Question 10 in section C has an internal choice.
- 4. Use of scientific calculator is allowed.
- 5. Number of Pages: 3.

SECTION A (5 Q x 4 Marks = 20 Marks)

S. No.		Marks	CO	
1	Define LaTeX and differentiate it from other typesetting formats, such as MS Word and Open Office.	4	C01	
2	Discuss the importance of algorithms and flowcharts in the process of developing computer programs.	4	CO1	
3	Write a gnuplot script to save a figure in JPEG format.	4	CO3	
4	Demonstrate how to plot data from a text file with column-based data using gnuplot, including the necessary code.	4	CO3	
5	Define LaTeX environments for typesetting mathematical symbols. Write a LaTeX code snippet to display the equation for gravitational force $F = \frac{G \cdot m_1 \cdot m_2}{r^2}$ with appropriate formatting. Where the symbols have their usual meaning.	4	CO1	
SECTION B (4 Q x 10 Marks = 40 Marks)				

Semester : VII Time : 03 hrs. Max. Marks: 100

6	Using Euler's Method for the equation, $\frac{dy}{dx} = y - x$, where $y(0) = 0$ calculate $y(0.2)$, $y(0.4)$ and $y(0.6)$ to four decimal places.	10	CO4
7	Describe how numerical differentiation can be used to approximate the derivative of a function. Given $f(x) = x^2$, Use the forward difference formula to approximate $f'(1)$ with $h = 0.1$. Show your calculations and discuss the impact of step size h on the accuracy of the result.	10	C04
	<i>OR</i> Using the Trapezoidal Rule, approximate the integral of $f(x) = x^3 + 2x$ over the interval [1,3] with 4 equal subintervals. Show each calculation step and explain how the Trapezoidal Rule approximates the area under the curve.	10	
8	What are the components of a LaTeX document preamble? Write a sample preamble for a physics lab report.	10	C01
9	Explain the Bisection Method for finding polynomial roots and discuss how to estimate error in the calculated roots.	10	CO4
	SECTION-C (2 Q x 20 Marks = 40 Marks)		
10	Describe the Runge-Kutta Method for solving ordinary differential equations (ODEs). Using the RK-4 Method, solve $\frac{dy}{dx} = 1 + y^2$, with the initial condition $y(0) = 0$, to find $y(0.2)$, $y(0.4)$, and $y(0.6)$. OR Using Lagrange Interpolation, find the approximate value of $f(x)$ at $x =$ 1.5 given the following data points: $(x_0, f(x_0)) = (1,1), (x_1, f(x_1)) = (2,4), (x_2, f(x_2)) = (3,9)$ Show the steps of the Lagrange formula and calculate the interpolated value.	20	CO4
11	Describe the Secant Method for finding the roots of a polynomial. Compare it with the Newton-Raphson Method, highlighting their	20	CO4

	advantages and disadvantages. Find the root of the equation $2x^2 - 9x - 9$	
	9 = 0 up to three decimal places using the Secant Method.	
		1