Name:

Enrolment No:

UPES End Semester Examination, December 2024 ELECTROMAGNETIC THEORY II

Course: Program:

Course Code: PHYS 4002

Instructions:

All questions are compulsory

(Q6 in section B has an internal choice & Q11 in section C has an internal choice)

INT. B.Sc-M.Sc (PHYSICS)

No. of pages: 2

SECTION A (50x4M=20Marks)

	(5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	State the Poynting's (work-energy) theorem.	4	CO1
Q 2	Describe briefly the Coulomb gauge.	4	CO1
Q 3	Describe briefly the concept of retarded time in electromagnetism.	4	CO1
Q 4	What is Debye shielding in plasmas?	4	CO1
Q 5	Give expressions for potential and field due to an electric monopole.	4	CO1
	SECTION B		1
	(4Qx10M= 40 Marks)		
Q 6	Give the first uniqueness theorem. Appraise the significance of boundary conditions as brought out by this theorem.		
	OR	10	CO3
	What are gauge transformations in electrodynamics? Evaluate the Coulomb gauge in detail.		
Q 7	Analyze the propagation of electromagnetic waves in conductors. Highlight the significant inferences that can be drawn from this analysis.	10	CO4
Q 8	On her 21 st birthday, one twin gets on a moving sidewalk, which carries her out to star X at speed 4/5c; her twin stays home. When the travelling twin gets to star X, she immediately jumps onto the returning moving sidewalk and comes back home to earth, again at speed 4/5c. Kindly note that she returns on her 39 th birthday (as determined by her watch).	4+4+2	CO2

Semester : VII Time : 03 hrs. Max. Marks: 100

	A. How old is her twin brother who stayed back home?B. How far away is star X (in light years)?C. Any significance of jumping on and off the sidewalk?where the symbols have their usual meaning.				
Q 9	Qualify the adage "Magnetism is a relativistic phenomenon" in your own words.	10	CO3		
	SECTION-C				
	(2Qx20M=40 Marks)				
Q 10	Evaluate the concept of retarded potentials. Begin with writing the expression for retarded potentials from the general expression for "V" and "A", and obtain the expression for Lienard-Wiechert potentials. Apprise the concept of <i>advanced potentials</i> .	15+5	CO4		
Q 11	 where the symbols have their usual meaning. Plasma is often referred to as the fourth state of matter. State and elaborate on the conditions needed to be satisfied to qualify a mixture as plasma. Describe the different types of plasma confinement in detail. 				
	OR Write short notes on:	10+10	CO3		
	a. Plasma instabilities				
	b. Low temperature plasma				