Name: Enrolment No:					
LIPES					
End Semester Examination, December 2024					
Programme Name: Integrated BSc-MSc (Physics)Semester: VII					
Course Name: Atomic & Molecular Physics Tim Course Code: PHYS4001 Max			me: 3 hrs ax. Marks:	e: 3 hrs A Marks: 100	
No. of pages: 2				100	
Instructions: As instructed in each section. Symbols have their usual meanings.					
SECTION A					
(Answer all the questions: $5 \text{ Qs} \times 4 \text{ M} = 20 \text{ Marks}$)					
S. No.			Marks	CO	
Q 1	In a tabular form write down the differences between 3-level laser and 4-level laser.		¹ 4	CO1	
Q 2	Identify which molecules are rotational active: (a) H ₂ , (b) CO ₂ , (c) H ₂ O, (d) CCl ₄		4	CO1	
Q 3	Sketch space quantization of J for the $4^2P_{3/2}$ state.		4	CO2	
Q 4	A vibrational level is observed at 2900 cm ⁻¹ for HCl molecule. Estimate the force constant k (consider, atomic mass unit = 1.677×10^{-27} kg).		e 4	CO3	
Q 5	Compute free space electric and magnetic fields associated with a He-Ne laser of intensity 15 W/m^2 .		- 4	CO4	
SECTION B (Answer all the questions: $4 \text{ Qs} \times 10 \text{ M} = 40 \text{ Marks}$)					
Q 6	What is population inversion? Discuss details of how population is achieved in 3-level and 4-level laser with the help of suitable diagrams.		s 10	CO1	
Q 7	Describe construction and working of solid state laser (ruby laser).		10	CO2	
Q 8	Calculate observed line frequencies for the atoms placed in 5.25 Tesla magnetic field. The fundamental line frequency is 600×10^{12} Hz.		10	CO2	
Q 9	Discuss Paschen-Back effect.				
	OR		10	CO3	
Discuss anomalous Zeeman effect.					

$(A_{1}, \dots, A_{n}) = (11, 41, \dots, 41, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1$					
(Answer all the questions: $2 \text{ Qs} \times 20 \text{ M} = 40 \text{ Marks}$)					
Einstein co-efficients A and B are related to each other in					
ing form,					
$\frac{v^3}{2}B_{21}$, and $B_{12} = B_{21}$	10	CO3			
nal structure of diatomic molecule shows microwave	10	CO4			
absorption with rotational constant $B = 12 \ cm^{-1}$. Compute moment of inertia (I) of the diatomic molecule.					
1 (a) Deduce the expression for magnetic moment (μ) originating due to					
ion of electron.	10	CO3			
, R and Q branches of vibrational-rotational spectra of olecule.	10	CO4			
OR					
t note on E.S.R.	10	CO3			
g' and gm_j and magnetic moment for the state,	10	CO4			
	Einstein co-efficients A and B are related to each other in ing form, $\frac{v^3}{r}B_{21}$, and $B_{12} = B_{21}$ nal structure of diatomic molecule shows microwave with rotational constant $B = 12 \ cm^{-1}$. Compute moment I) of the diatomic molecule. e expression for magnetic moment (μ) originating due to ion of electron. con and Q branches of vibrational-rotational spectra of holecule. OR t note on E.S.R. fg' and 'gm_j' and magnetic moment for the state,	Einstein co-efficients A and B are related to each other in ing form, $\frac{v^3}{r}B_{21}$, and $B_{12} = B_{21}$ 10nal structure of diatomic molecule shows microwave with rotational constant B = 12 cm^{-1} . Compute moment 1) of the diatomic molecule.10e expression for magnetic moment (μ) originating due to ion of electron.10 μ , R and Q branches of vibrational-rotational spectra of nolecule.10ORt note on E.S.R.10 fg' and ' gm_j ' and magnetic moment for the state,10			