Name: Enrolment No:				
		UPES		
	End Semest	ter Examination, Dec 2024		
Programme Name : Integrated B.ScM.Sc. MathematicsSemeCourse Name: Approximation TheoryTime				
Instr	uctions: All questions are compuls	sory. There is an internal choice in Q9	and Q11.	
		SECTION A		
	Aı	nswer all questions		
S. No.			Marks	СО
Q 1	State the theorem on existence of b	pest approximation in a metric space.	4	C01
Q 2	Does there exist a best approximatiline described as $S = \{x \in \mathbb{Q} : 2 \le$	on for $\alpha = \sqrt{1.4}$ in some subset <i>S</i> of real $x^2 \le 3$? Justify your answer.	4	CO1
Q 3	Prove that the norm defined as $ (x) $ convex on the normed linear space	$ _{\infty} = \max\{ x_1 , x_2 \}$ is not strictly \mathbb{R}^2 .	4	CO2
Q 4	Approximate $f(x) = \sin x$ in the in $p(x)$ such that $p(x_i) = f(x_i)$ for x	nterval $[0, \pi]$ by some polygonal function $x_i = 0, \frac{\pi}{2}, \pi$.	4	CO2
Q 5	Determine whether the system of condition on the interval $[-1,1]$.	functions $\{1, x^2, x^3\}$ satisfies the Haar	4	CO4
		SECTION B	I	I
	Answer all question	is. There is an internal choice in Q9.		
Q 6	Let <i>X</i> be a normed linear space and that there always exist $y^* \in Y$ such	$Y \subset X$ a subspace of it and $x \in X$. Prove that $ x - y^* = \min_{y \in Y} x - y $.	10	CO1

Q 7	Show that $B_n f \to f$ for $f(x) = x^3$ where $B_n f(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) {}^n C_k x^k (1-x)^{n-k}$	10	CO3
Q8	Find the least positive integer <i>n</i> such that $ B_n f - f < 10^{-3}$ for $f(x) = x^2$, where $B_n f$ is the Bernstein polynomial for $f \in C[0,1]$.		CO3
Q 9	Find a polygonal function $p(x) \in S_2(x)$ where $S_2(x)$ is the space of polygonal functions defined for $x_0 \le x_1 \le x_2$ that approximate the function $f(x) = x^2$ on $[x_0, x_2]$ where $x_0 = 0$, $x_2 = 1$ and x_1 divides the interval in the ratio 1:3. OR Let $f \in C[a, b], 0 < a < b < 1$. Prove that there exists a sequence of polynomials with integer coefficients converging uniformly to f .	10	CO2
	SECTION-C Answer all questions. There is an internal choice in Q9.		
Q10	Find the least <i>n</i> such that $\sup_{x \in [0,2]} f(x) - p(x) < 10^{-2}$ where $f(x) = x^2$ and $p(x)$ is the function defined as $p(x) = \begin{cases} ax + b, & \text{if } 0 \le x \le \frac{1}{n} \\ cx + d, & \text{if } \frac{1}{n} \le x \le 2 \end{cases}$	20	CO2
Q11	 Find the projection of f(x) = e^x on to the subspace W of C[0,1] that is spanned by {1, x}. Determine the sum squared error when approximating by this projection. OR a) Find the second order Fourier approximation of E(t) = t + 1. Provide a general formula for nth order Fourier approximation of E(t). b) Determine the first order Maclaurin's polynomial of f(x) = e^x and obtain the sum squared error when approximating by this polynomial. 	20	CO4