Name:

Enrolment No:

UPES End Semester Examination, Dec 2024

Course: Operations Research Program: Int. B.Sc.-M.Sc. (Mathematics) Course Code: MATH4002 Semester: VII Time : 03 hrs. Max. Marks: 100

Instructions: Read the following instructions carefully: Mention Name and Roll No. at the top of the question paper. Attempt all questions. Q. No. 9 & 11 has an internal choice.

Use of scientific calculator is allowed.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Show that the set $A = \{(x, y): 0 \le y \le 5 \text{ when } 0 \le x \le 2 \text{ and } 3 \le y \le 5 \text{ when } 2 \le x \le 7\}$ is not a convex set.	4	CO1
Q2	A tape recorder company manufactures models A, B and C, which have profit contributions per unit of Rs 15, Rs 40, and Rs 60, respectively. The weekly minimum production requirements are 25 units for model A, 130 units for model B and 55 units for model C. Each type of recorder requires a certain amount of time for the manufacturing of the component parts for assembling and for packaging. Specifically, a dozen units of model A require 4 hours for manufacturing, 3 hours for assembling and 1 hour for packaging. The corresponding figures for a dozen units of model B are 2.5, 4 and 2 and for a dozen units of model C are 6, 9 and 4. During the forthcoming week, the company has available 130 hours of manufacturing, 170 hours of assembling and 52 hours of packaging time. Formulate the problem as an LP model so as to maximize the total profit of the company.	4	CO1
Q3	800 units of certain item of stock are needed over each year period. If the unit cost is Rs. 400 and the cost of each order is Rs. 150, and the carrying cost is 1.5% of the cost of each unit. Determine the Economic Order Quantity (EOQ) for this item and the number of orders per year.	4	CO3
Q4	Explain the components of Kendall's notation $A/B/C$: D/E for representing a queuing model. Also, present one supporting example.	4	CO3

	- 1								r	1
Q5	For the following	For the following cost (costs in Rs. per unit) matrix:								
		D_1	D_2	<i>D</i> ₃	D_4	D_5	Supply			
	St	5	8	6	6	3	8			
	$\frac{S_1}{S_2}$	4	7	7	6	5	5		4	CO2
	$\frac{S_2}{S_2}$	8	4	6	6	4	9			
	Demand	1 4	4	5	4	8	-			
	Determine an in	nitial basic	feasible s	solution f	or the gi	ven TP u	sing North	-West		
	Corner Method	(NWCM)			U		0			
		· · ·		SECT	FION B					
			(4	Qx10M	= 40 Ma	rks)				
Q6	For the following	ng LPP:								
			$\operatorname{Max} Z =$	$= 4x_1 + 6$	$x_2 + 2x_1$	3				
			s.t. x_1 -	$+ x_2 + x_3$	$_{3} \leq 3$,					
			x_1	$+4x_{2}+$	$7x_3 \le 9$,				
	The optimal tak	la in given	x_1 ,	$x_2, x_3 \ge$	0.					
	The optimal tat	v Is given	$\frac{1}{b}$	r	r	C	c			CO1
		AB	$\frac{1}{1}$	$1 \lambda_2$	Λ ₃	3 ₁	3 ₂		10	
		<i>x</i> ₁	1 1	0	-1	4/3	-1/3			
		<i>x</i> ₂	2 0	1	2	-1/3	1/3			
		$Z_j - C_j$	0	0	6	10/3	2/3			
	Determine the r	ange of co	efficient a	$c_1 \text{ of } x_1 \text{ i}$	1 the obi	ective fu	nction such	that the		
	current optimal	solution re	emains ur	ichanged.						
Q7	A company has	4 machin	es to do	3 jobs. E	ach job	can be a	ssigned to	one and		
	only machine.	The cost o	f each jo	b on each	n machii	ne is give	en in the fo	ollowing		CO2
	table:									
				Mach	nines					
				1 1	2	3 4	4		10	
		Jobs	A 1	18 2	24 2	28 3	2		10	
			B	8 1	3	$\frac{17}{10}$ 1	9			
	XX71 / 1	•	C	$\begin{bmatrix} 0 \\ \vdots \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \end{bmatrix}$	5	19 2	2			
	what are job as	signments	which wi	III minim	ize the c	ost?				
08	A salesman nee	ds to visit	4 cities: A	A. B. C. a	nd D. T	he distan	ce (in kilor	neters)		
	between each p	air of citie	s is given	in the fo	llowing	table:		/		
	1		U		U					
		City	А	В	С	D]			
		А	0	10	15	20			10	CO2
		В	10	0	35	25			10	
		С	15	35	0	30				
		D	20	25	30	0				
	Find the shortest possible route that the salesman can take to visit all cities once and return to the starting city.							es once		

Q9	Obtain the optimal solution for the following LPP:						
	$Max \ Z = 3x_1 + 2x_2 + x_3$						
	s. t. $2x_1 + 5x_2 + x_3 = 12$,						
	$3x_1 + 4x_2 = 11$,						
	$x_2, x_3 \ge 0$, and x_1 unrestricted.						
	OR	10	CO4				
	Solve the following LPP using simplex method:	10					
	$\operatorname{Max} Z = 3x_1 + 9x_2$						
	s. t. $x_1 + 4x_2 \le 8$,						
	$x_1 + 2x_2 \le 4,$						
	$x_1, x_2 \ge 0.$						
	SECTION						
	5EU HUN-U (20x20M=40 Marks)						
010	a) Derive an expression for EOO for deterministic inventory model with						
X ¹⁰	allowable shortages						
	b) What are the main costs associated with inventory? Explain briefly the	15+5	CO3				
	difference between ordering cost and holding cost.	1010	000				
Q11	A self-service canteen employs one cashier at its canteen counter. The customers						
	are to get their tokens for the dishes earlier. 10 customers arrive on an average						
	every 7 minutes, while the cashier can serve 12 customers in 7 minutes. Assuming						
	Poisson distribution for arrival rate and Exponential distribution for service, find						
	a) Average number of customers in the system.						
	b) Average number of customers in waiting line or average length of the waiting line						
	c) Average time a customer spends in the system						
	d) Average time a customer waits before being served						
	d) Average time a customer waits before being served.	5+5					
	OR	5+5 +	CO3				
		5+5					
	A single-server ticket counter has an arrival rate of 20 customers per hour and the						
	server can serve 30 customers per hour. Assume the system follows the M/M/1						
	queuing model. Calculate the following:						
	a) The probability that the server is free (i.e., there are no customers in the						
	system).						
	b) The probability that there are no customers in the queue.						
	c) The probability that there are exactly 5 customers in the system.						
	d) The probability that there are at least 2 customers in the system.						